103 résultats trouvés
Revenir à la recherche avancée
Mais pourquoi O est le centre?
et si alpha varie dans ]-pi;pi], 3alpha varie aussi dans ]-pi;pi], et puis c'est un cercle de toute manière...
je crois que je m'embrouille... :hein:
- par Roxane38
- 22 Nov 2008, 19:04
-
- Forum: ✎✎ Lycée
- Sujet: Complexes et ensemble de points
- Réponses: 10
- Vues: 1447
Ah d'accord... Mais on ne peut pas faire de calculs avec alpha si celui-ci prend toutes les valeurs sur ]-pi;pi]... Donc j'ai m(z=1e^(i;))) de rayon r=1 et de centre O(0;0) et j'ai M(Z=1/3e^(i3;))) de rayon r=1/3) mais je n'ai pas son centre... et je ne sais pas comment le trouver, il faudrait que j...
- par Roxane38
- 22 Nov 2008, 18:31
-
- Forum: ✎✎ Lycée
- Sujet: Complexes et ensemble de points
- Réponses: 10
- Vues: 1447
m (z = x + iy)
Mais je ne sais pas ce que valent x et y ? Je ne fais pas le lien entre les informations que j'ai trouvé plus haut et le problème qui se pose ici...
Que valent x et y?
- par Roxane38
- 22 Nov 2008, 18:12
-
- Forum: ✎✎ Lycée
- Sujet: Complexes et ensemble de points
- Réponses: 10
- Vues: 1447
Justement, c'est ce qu'il me manque pour trouver les coordonnées du centre de M(Z). Et je ne sais pas comment le calculer...
- par Roxane38
- 22 Nov 2008, 18:02
-
- Forum: ✎✎ Lycée
- Sujet: Complexes et ensemble de points
- Réponses: 10
- Vues: 1447
Bonjour à tous! Quelques difficultés sur cet exercice sur les nombres complexes: Le plan complexe est rammené à un repère orthonormal direct (O, u, v). A tout point m d'affixe z, on associe le point M d'affixe Z= (z^3)/(2+|z|^3) On note z= r*e^(i*;)) et Z= p*e^(i*;)) 1) Exprimer p et ;) en fonction ...
- par Roxane38
- 22 Nov 2008, 17:26
-
- Forum: ✎✎ Lycée
- Sujet: Complexes et ensemble de points
- Réponses: 10
- Vues: 1447
Mais j'ai trouvé f'(x)= 2xe^(2x) + 3e^(2x)
Et la dérivée étant positive sur R, f est croissante sur R, et qu'est ce que celà apporte pour la résolution de l'exercice? Désolé, je ne vois pas :(
- par Roxane38
- 03 Nov 2008, 19:39
-
- Forum: ✎✎ Lycée
- Sujet: Exponentielle et nombre de solutions
- Réponses: 7
- Vues: 767
Est il possible de dire, tout simplement, que f étant le produit de deux fonctions u et v telles que
u(x)=(x+1) définie sur R
v(x)=e^(2x) définie sur R et à valeurs sur R*+
Alors f est définie sur R et à valeurs sur R*+, donc l'équation f(x)=-1/16 n'a pas de solutions?
- par Roxane38
- 03 Nov 2008, 19:32
-
- Forum: ✎✎ Lycée
- Sujet: Exponentielle et nombre de solutions
- Réponses: 7
- Vues: 767
Bonjour à tous. Encore un problème avec les mathématiques. Voici l'énnoncé: http://img98.imageshack.us/my.php?image=ex1pf0.jpg http://img147.imageshack.us/my.php?image=ex2bc0.jpg Je pense avoir réussi le 1. Voici mes résultats 1.a. g(x)= C * e^(1/4 * x) b. g(t) = e^(1/4 * x) c. t > ln3 * 4 Donc la p...
- par Roxane38
- 03 Nov 2008, 19:13
-
- Forum: ✎✎ Lycée
- Sujet: Equations différentielles
- Réponses: 0
- Vues: 536
Bonjour à tous. Dans mon livre de maths, il y a une partie des exos sur les exponentielles intitulé "prendre des initiatives". Voici l'énoncé de l'exercice: f est la fonction définie sur R par f(x)=(x+1)e^(2x) Est-il vrai que l'équation f(x)=-1/16 a deux solutions distinctes? Malheureuseme...
- par Roxane38
- 03 Nov 2008, 18:36
-
- Forum: ✎✎ Lycée
- Sujet: Exponentielle et nombre de solutions
- Réponses: 7
- Vues: 767
J'ai trouvéééééééé!!!!!!!!! (toute cette aprem que je suis dessus).
Effectivement, problème avec les ...
Merci à vous deux, vous m'avez bien aidé
Plus de sollicitations pour ce soir.
Merciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii :we:
- par Roxane38
- 04 Sep 2008, 18:40
-
- Forum: ✎✎ Lycée
- Sujet: Raisonnement par récurrence....
- Réponses: 8
- Vues: 883
J'ai oublié de dire que ma première question n'a pas de lien avec ma 2ème P(n) est vraie tel que 1+3+5+...+ [( 2n ) -1 ] = n^2 En fait j'ai oublié de mettre les parenthèses, milles excuses :doh: Si je "rallonge" l'équation, j'ai P(n+1) tel que 1+3+5+...+ 2(n+1-2)-1 + (2(n+1-1)-1 + 2(n+1)-1...
- par Roxane38
- 04 Sep 2008, 18:24
-
- Forum: ✎✎ Lycée
- Sujet: Raisonnement par récurrence....
- Réponses: 8
- Vues: 883
Bon, j'ai parlé trop vite... P(n) est vraie tel que 1+3+5+...+2n-1 = n^2 Je dois donc prouver que P(n+1) est vraie. Voici mon calcul: 1+3+5+...+2(n+1)-1 = 1+3+5+...+2n+2-1 = 1+3+5+...+2n-1 +2 = n^2 +2 ????? Le problème est que n^2 +2 n'est pas égal à (n+1)^2. Ou est mon erreur de calcul? Ou peut êtr...
- par Roxane38
- 04 Sep 2008, 18:10
-
- Forum: ✎✎ Lycée
- Sujet: Raisonnement par récurrence....
- Réponses: 8
- Vues: 883
:euh: Merci beaucoup :)
Trop de soleil pour moi cet été, j'ai du perdre une partie de mes neuronnes.
Merci à vous et bonne soirée
- par Roxane38
- 04 Sep 2008, 17:56
-
- Forum: ✎✎ Lycée
- Sujet: Raisonnement par récurrence....
- Réponses: 8
- Vues: 883
Bonjour à tous! Pas de problème de compréhension pour moi dans ce premier chapitre de terminale S... D'ailleurs ma question ne concerne pas vraiment le raisonnement par récurrence. Cependant, je bloque ici J'ai P(n) tel que 1+2+3+...+n = [n*(n+1)]/2 Et mon manuel me met que P(n+1) est tel que 1+2+3+...
- par Roxane38
- 04 Sep 2008, 17:46
-
- Forum: ✎✎ Lycée
- Sujet: Raisonnement par récurrence....
- Réponses: 8
- Vues: 883
Non, mais je crois que vous n'avez pas très bien compris le sens de ma question... Evidement que je sais résoudre cette équation par moi même, mais je me demandais juste s'il y avait une manière plus rapide, car bien sûr, c'est facile avec 1024, mais qu'en est il avec 124684622684 ??? (je ne vous de...
- par Roxane38
- 19 Aoû 2008, 17:53
-
- Forum: ✎✎ Lycée
- Sujet: Equation: 1024=2^n ????
- Réponses: 33
- Vues: 3239
Très bien, merci à vous... :D
Je pensais qu'il y avait une méthode plus rapide mais non alors.
Je ne comprends pas la méthode de rene38, et je ne vais pas chercher à comprendre car elle ne parait pas à mon niveau...
Merci :)
- par Roxane38
- 17 Aoû 2008, 12:41
-
- Forum: ✎✎ Lycée
- Sujet: Equation: 1024=2^n ????
- Réponses: 33
- Vues: 3239
Euler911 a écrit:(méthode à utiliser: décomposition en facteurs premiers...);)
C'est à dire? :hein:
- par Roxane38
- 17 Aoû 2008, 11:24
-
- Forum: ✎✎ Lycée
- Sujet: Equation: 1024=2^n ????
- Réponses: 33
- Vues: 3239