Besoin d'aide dm sur les fonctions

Réponses à toutes vos questions de la 2nde à la Terminale toutes séries
RosalyaPhantomhive
Messages: 4
Enregistré le: 23 Avr 2013, 07:47

besoin d'aide dm sur les fonctions

par RosalyaPhantomhive » 23 Avr 2013, 07:57

Bonjour à tous, j'ai vraiment besoin de votre aide ! Je bloque sur mon devoir maison que je dois rendre dans quelques jours. Aidez-moi je vous en suplie!!

Devoir maison:
Fonction:Derivation,intégration,équation


Soit f la fonction définie sur l'intervalle I=]-1,+infini[ par:

f(x)=(2x/1+x)-ln(1+x)

On note Cf sa courbe représentative dans le plan muni d'un repère orthogonal (0,vecteur u,vecteur v) d'unités graphiques 1cm sur l'axe des abscisses et 2cm sur l'axe des ordonnées

Partie A
(1)Calculer la limite de f en +infini
(2) (a)En remarquant que pour tout réel x dans I, on a l'égalite:

f(x)=(1/1+x)[2x-(1+x)ln(1+x)]
Déterner la limite de f en -1
(b)En déduire l'équation d'une droiteD asymptote à Cf
(3)Déterminer la dérivée f' de f et établir que pour tout réel x de I, on a:

f'(x)=(1-x)/(1+x)²
(4) (a)Etudier le signe de f' sur I
(b)Déterminer la valeur exacte de f(1)
(c)Dresser le tableau de variations de f sur I

Partie B
(1)Déterminer une équation de la tangente T à la courbe Cf au point d'abscisse 0
(2) (a)Justifier que l'équation f(x)=0 admet une unique solution "alpha" dans l'intervalle [1,5]
Ensuite, démontrer que :
ln(1+"alpha")=2"alpha"/1+"alpha"
(b)Donner une valeur approchée de "alpha" 10^-2 près
(3)Déterminer le signe de f sur [0,"alpha"]
(4)Tracer dans le repère (0, vecteur u, vecteur v) la tangente T, la droiteD ,puis la courbe Cf

Partie C
(1)Démontrer que la fonction F définie sur I par :
F(x)=-(3+x)ln(1+x)+3x
est une primitive de f
(2)Soit H la partie du plan délimitée par la courbe Cf , l'axe des abscisses et les droites d'équation x=0 et x="alpha"
(a)Hachurer la partie H sur le dessin
(b) Calculer, en unités d'aire et en fonction de "alpha", l'aire notée A("alpha") de la partie H et démontrer que :
A("alpha")=2 [("alpha"²-3"alpha")/(1+"alpha")]


Voilà , répondez moi vite je vous en suplie!!



Avatar de l’utilisateur
ampholyte
Membre Transcendant
Messages: 3940
Enregistré le: 21 Juil 2012, 07:03

par ampholyte » 23 Avr 2013, 08:09

Bonjour,

Qu'elles sont les questions qui te posent problèmes ? Car sans sujet, il va être difficile de te répondre.

RosalyaPhantomhive
Messages: 4
Enregistré le: 23 Avr 2013, 07:47

par RosalyaPhantomhive » 23 Avr 2013, 08:31

ampholyte a écrit:Bonjour,

Qu'elles sont les questions qui te posent problèmes ? Car sans sujet, il va être difficile de te répondre.

J'arrive pas a mettre le sujet en ligne,mais...j'y travaille^^

titine
Habitué(e)
Messages: 5574
Enregistré le: 01 Mai 2006, 13:59

par titine » 23 Avr 2013, 09:42

RosalyaPhantomhive a écrit:J'arrive pas a mettre le sujet en ligne,mais...j'y travaille^^

Tu peux aussi essayer d'écrire tes questions.
Bien sûr tu ne pourras pas reproduire certains symboles à moins d'utiliser TEX mais le fait de devoir reformuler l'énoncé avec des mots permet souvent de mieux le comprendre et parfois de trouver soi même la réponse !

Avatar de l’utilisateur
ampholyte
Membre Transcendant
Messages: 3940
Enregistré le: 21 Juil 2012, 07:03

par ampholyte » 23 Avr 2013, 09:57

Quels sont les questions qui te posent problèmes ?

RosalyaPhantomhive
Messages: 4
Enregistré le: 23 Avr 2013, 07:47

par RosalyaPhantomhive » 23 Avr 2013, 10:04

ampholyte a écrit:Quels sont les questions qui te posent problèmes ?

je bloque un peu sur tous , surtout a partir de la 2b de la partie a, et comme tous est lié... je patine...

Avatar de l’utilisateur
ampholyte
Membre Transcendant
Messages: 3940
Enregistré le: 21 Juil 2012, 07:03

par ampholyte » 23 Avr 2013, 10:18

D'accord,

Tu as réussi à prouver dans 2a) que

Tu cherches à calculer la limite en -1.

Tu sais que par croissance comparée :


donc je te laisse conclure pour la limite.

b) En déduire l'équation d'une droiteD asymptote à Cf

Tu as calculer une certaine limite qui te permet de trouver l'équation de la droite D.

RosalyaPhantomhive
Messages: 4
Enregistré le: 23 Avr 2013, 07:47

par RosalyaPhantomhive » 23 Avr 2013, 10:30

ampholyte a écrit:D'accord,

Tu as réussi à prouver dans 2a) que

Tu cherches à calculer la limite en -1.

Tu sais que par croissance comparée :


donc je te laisse conclure pour la limite.

b) En déduire l'équation d'une droiteD asymptote à Cf

Tu as calculer une certaine limite qui te permet de trouver l'équation de la droite D.




Et comment tu fais ça??

Avatar de l’utilisateur
ampholyte
Membre Transcendant
Messages: 3940
Enregistré le: 21 Juil 2012, 07:03

par ampholyte » 23 Avr 2013, 10:36

Bon reprenons le calcul de la limite :

On cherche à calculer :


On décompose :



et

(croissance comparée et 2*(-1))

Donc le résultat final est du type -2*+oo = -oo (A NE PAS ECRIRE, c'est pour te montrer)

D'où




D'après le cours si : alors f(x) admet une asymptote verticale d'équation x = a.

 

Retourner vers ✎✎ Lycée

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 92 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite