Nombres réel et sous-groupe additif de (R,+)
Réponses à toutes vos questions après le Bac (Fac, Prépa, etc.)
-
medmed
- Messages: 8
- Enregistré le: 26 Nov 2016, 16:58
-
par medmed » 26 Nov 2016, 17:17
soit H un sous-groupe de (R,+) . On pose H+* = H

R+* et

=inf(H+*)
1-si

H+* , montrer que H=

Z
2-si

n'appartient pas à H+* , montrer que

=0 et en déduir que H est dense dans R
-
zygomatique
- Habitué(e)
- Messages: 6928
- Enregistré le: 20 Mar 2014, 12:31
-
par zygomatique » 26 Nov 2016, 17:48
salut
si a > 0 alors soit y > a dans H+*
il existe un entier n tels que na =< y < (n + 1)a (car R est archimédien)
on en déduit alors que y - na < a
or .... et .... donc ....
Ce qui est affirmé sans preuve peut être nié sans preuve. EUCLIDE
-
Kolis
- Membre Relatif
- Messages: 482
- Enregistré le: 25 Sep 2015, 16:29
-
par Kolis » 26 Nov 2016, 18:18
Bonsoir !
Il faut déjà être sûr de l'existence de

: un ensemble vide n'a pas de borne inférieure.
@zygomatique t'a donné la solution pour 1.
Pour 2., en supposant

, tu montres qu'il y a un élément

tel que

.
Puis qu'il existe un élément

. En considérant

tu auras une contradiction!
Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 66 invités