Sin(x - π/2 ) = -cos(x)
Réponses à toutes vos questions de la 2nde à la Terminale toutes séries
-
so213
- Membre Relatif
- Messages: 164
- Enregistré le: 04 Mai 2015, 10:28
-
par so213 » 26 Mar 2016, 15:06
Bonjour à tous , je ne comprends pas pourquoi sin(x - π/2 ) = -cos(x)
Merci
-
bolza
- Membre Relatif
- Messages: 449
- Enregistré le: 04 Juin 2015, 10:15
-
par bolza » 26 Mar 2016, 15:27
Bonjour,
le mieux c'est de faire un dessin sur le cercle trigonométrique,
tu traces les angles x et x-pi/2 et tu regarde les sinus et cosinus.
Avec un peu de géométrie élémentaire tu devrais retrouvé la relation.
Sinon tu peux regarder aussi ce que donne la formule sin(a-b) avec a=x et b=pi/2 ...
-
Lostounet
- Modérateur
- Messages: 9665
- Enregistré le: 16 Mai 2009, 11:00
-
par Lostounet » 26 Mar 2016, 15:27
Yo
Parce que sin(pi/2-x)=cos(x) comme je t'ai expliqué, et que la fonction sinus est impaire: sin(-y)=-sin(y)
Donc:
sin(x-pi/2)= sin(-(pi/2-x))=-sin(pi/2-x)=-cos(x)
Merci de ne pas m'envoyer de messages privés pour répondre à des questions mathématiques ou pour supprimer votre compte.
-
so213
- Membre Relatif
- Messages: 164
- Enregistré le: 04 Mai 2015, 10:28
-
par so213 » 26 Mar 2016, 15:52
bolza a écrit:Bonjour,
le mieux c'est de faire un dessin sur le cercle trigonométrique,
tu traces les angles x et x-pi/2 et tu regarde les sinus et cosinus.
Avec un peu de géométrie élémentaire tu devrais retrouvé la relation.
Sinon tu peux regarder aussi ce que donne la formule sin(a-b) avec a=x et b=pi/2 ...
Si j'avais réussit à trouver à l'aide du dessin je n'aurai pas poster cette question

,Il y a seulement sin( π/2 + x ) = cos(x)
-
bolza
- Membre Relatif
- Messages: 449
- Enregistré le: 04 Juin 2015, 10:15
-
par bolza » 26 Mar 2016, 16:12
as-tu remarqué que x+pi/2 et x-pi/2 sont "diamétralement opposés" ?
-
so213
- Membre Relatif
- Messages: 164
- Enregistré le: 04 Mai 2015, 10:28
-
par so213 » 26 Mar 2016, 16:25
pourrais-tu me dessiner je pense que ça serait bcp mieux en terme de compréhension stp

-
bolza
- Membre Relatif
- Messages: 449
- Enregistré le: 04 Juin 2015, 10:15
-
par bolza » 26 Mar 2016, 16:35
Euh non, je ne sais pas où il faudrait héberger l'image.
pi/2 correspond a un angle droit.
pi correspond a un angle plat.
(x-pi/2)+pi = x+pi/2 (1)
que se passe-t-il pour le cosinus et le sinus quand on a deux points opposé sur le cercle ?
sinon d'après (1) que dire de sin(a+pi) ?
-
so213
- Membre Relatif
- Messages: 164
- Enregistré le: 04 Mai 2015, 10:28
-
par so213 » 26 Mar 2016, 16:47
Lostounet a écrit:Yo
Parce que sin(pi/2-x)=cos(x) comme je t'ai expliqué, et que la fonction sinus est impaire: sin(-y)=-sin(y)
Donc:
sin(x-pi/2)= sin(-(pi/2-x))=-sin(pi/2-x)=-cos(x)
à la fin tu as rajouté le signe - à cos(x) parce qu'il y a "-sin(x)" ??
-
so213
- Membre Relatif
- Messages: 164
- Enregistré le: 04 Mai 2015, 10:28
-
par so213 » 26 Mar 2016, 17:03
bolza a écrit:Euh non, je ne sais pas où il faudrait héberger l'image.
pi/2 correspond a un angle droit.
pi correspond a un angle plat.
(x-pi/2)+pi = x+pi/2 (1)
que se passe-t-il pour le cosinus et le sinus quand on a deux points opposé sur le cercle ?
sinon d'après (1) que dire de sin(a+pi) ?
et en dessinant je remarque que le point (x-pi/2)+pi = x+pi/2 sont diamétralement opposé et ça forme π ainsi leur cos sont égales mais de sens opposé et pareil pour sin
-
bolza
- Membre Relatif
- Messages: 449
- Enregistré le: 04 Juin 2015, 10:15
-
par bolza » 26 Mar 2016, 17:12
Oui

et tu remarqueras que x-pi/2 + pi/2 = x et x+pi/2 = x+pi/2,
donc en partant de x-pi/2 en tournant de pi/2 (donc à angle droit) on tombe sur x,
et en tournant encore à angle droit on tombe sur x+pi/2.
Maintenant tu as tous les éléments en main ^^
-
so213
- Membre Relatif
- Messages: 164
- Enregistré le: 04 Mai 2015, 10:28
-
par so213 » 26 Mar 2016, 18:37
Merci bcp !

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 37 invités