Petit problème de calcul...
Réponses à toutes vos questions de la 2nde à la Terminale toutes séries
-
Jilou
- Membre Naturel
- Messages: 68
- Enregistré le: 24 Oct 2011, 14:28
-
par Jilou » 24 Mar 2012, 17:58
Bonjour :D
Voici l'énoncé:
"On se place sur le plan muni d'un repère orthonormé (O, i, j)
Placer les points A(2;3) et B(-3;1)
1. Soit M(x;y), exprimer Vecteur MA.MB en fonction de x et de y.
J'ai deja repondu à cette question et j'ai tout simplement calculer les coordonnées de MA et MB pour ensuite les remplacer dans la formule u.v= xx'+yy'
Et à la fin je trouve (2-x)(-3-x)+(3-y)(1-y)
Et voici la question 2:
"Determiner et representer l'ensemble des points M(x;y) du plan tels que Vecteur MA.MB=5
Je n'ai pas compris le sens de cette question moi j'ai tenté de faire comme avec une equation de cercle mais mon resultat n'est pas concluent :triste:
Voici ce que j'obtiens: x^2+x+y^2-4y=8
Merci à celui ou celle qui m'aidera!
-
chan79
- Membre Légendaire
- Messages: 10330
- Enregistré le: 04 Mar 2007, 19:39
-
par chan79 » 24 Mar 2012, 18:08
Jilou a écrit:Bonjour

Voici l'énoncé:
"On se place sur le plan muni d'un repère orthonormé (O, i, j)
Placer les points A(2;3) et B(-3;1)
1. Soit M(x;y), exprimer Vecteur MA.MB en fonction de x et de y.
J'ai deja repondu à cette question et j'ai tout simplement calculer les coordonnées de MA et MB pour ensuite les remplacer dans la formule u.v= xx'+yy'
Et à la fin je trouve (2-x)(-3-x)+(3-y)(1-y)
Et voici la question 2:
"Determiner et representer l'ensemble des points M(x;y) du plan tels que Vecteur MA.MB=5
Je n'ai pas compris le sens de cette question moi j'ai tenté de faire comme avec une equation de cercle mais mon resultat n'est pas concluent :triste:
Voici ce que j'obtiens: x^2+x+y^2-4y=8
Merci à celui ou celle qui m'aidera!
salut
tes calculs sont justes
x²+x c'est le début de (x+1/2)²
y²-4y c'est le début de (y-2)²
-
Jilou
- Membre Naturel
- Messages: 68
- Enregistré le: 24 Oct 2011, 14:28
-
par Jilou » 24 Mar 2012, 18:15
chan79 a écrit:salut
tes calculs sont justes
x²+x c'est le début de (x+1/2)²
y²-4y c'est le début de (y-2)²
oui mais quand je l'ai developpé sa me donne pas exactement la même equation... :triste:
Là est mon probléme...

-
chan79
- Membre Légendaire
- Messages: 10330
- Enregistré le: 04 Mar 2007, 19:39
-
par chan79 » 24 Mar 2012, 18:26
Jilou a écrit:oui mais quand je l'ai developpé sa me donne pas exactement la même equation... :triste:
Là est mon probléme...

tu peux remplacer x²+x par (x+1/2)²-1/4
-
Jilou
- Membre Naturel
- Messages: 68
- Enregistré le: 24 Oct 2011, 14:28
-
par Jilou » 24 Mar 2012, 18:34
chan79 a écrit:tu peux remplacer x²+x par (x+1/2)²-1/4
Ok.. sa permet de supprimer le 0,25 en trop ok je viens de comprendre ^^
Merciii beaucoup!
Bonne fin de soirée :we:
Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 26 invités