Exercice sur les angles orientés, je ne comprends pas ...

Réponses à toutes vos questions de la 2nde à la Terminale toutes séries
Hardtoexplain91
Membre Relatif
Messages: 408
Enregistré le: 07 Oct 2007, 14:54

Exercice sur les angles orientés, je ne comprends pas ...

par Hardtoexplain91 » 09 Nov 2007, 00:37

Bonjour, j'ai un exercice sur les [2pi]. J'ai compris les applications du cours, mais là j'ai un exercice où je bloque: j'aimerais avoir des explications, suivis des étapes de développement , svp.
Merci, ce serait très sympa.

Soit des réels x,y,x' et y' tels que : x=y[2pi] et x'=y'[2pi].
Montrer que x+x'=y+y' [2pi] et x-x' = y-y' [2pi].
Ensuite, ils nous demande : proposer deux réels x et y tels que 2x=2y[2pi], mais pour lesquels on n'a pas x = y[2pi]. Que dire des points associés sur le cercle trigonométrique à deux réels x et y tels que 2x=2y[2pi].

Meric de bien vouloir m'aider



hellow3
Membre Irrationnel
Messages: 1093
Enregistré le: 31 Oct 2007, 16:22

par hellow3 » 09 Nov 2007, 23:01

Salut.

x=y[2pi] et x'=y'[2pi]
equivalent à :

il existe k et k' entier relatifs tq:
x=y + k*2*PI
x'=y' + k*2*PI

Donc:
x+x'=(y+k*2*PI) + (y'+k'*2*PI) = y+y' +2*Pi*(k+k')
Comme la somme de deux entiers rela est un entier relatif
= y+y' [2pi]

idem pour x-x'.

x=0 et y=Pi.
2x=0 et 2y=2Pi

x n'est pas egal à y modulo 2Pi, car il n'existe pas d'entier relatif k tel que x=y+k*2Pi. Contrairement à 2x=2y +(-1)*2Pi

Les 2 points associés à x et y sont confondus.

 

Retourner vers ✎✎ Lycée

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 32 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite