Petit exo sympa

Olympiades mathématiques, énigmes et défis
nekros
Membre Irrationnel
Messages: 1507
Enregistré le: 30 Oct 2005, 18:57

petit exo sympa

par nekros » 23 Juil 2006, 18:50

Bonsoir,

Avant de partir en vacances, un petit exo sympa :


Soient de dans de classe et de dans telle que .
On suppose que : ,

Démontrer que est bornée.

Bonne réflexion.

Thomas G :zen:



nekros
Membre Irrationnel
Messages: 1507
Enregistré le: 30 Oct 2005, 18:57

par nekros » 23 Juil 2006, 22:47

Personne ?
Les exos que je propose n'ont vraiment pas de succès en ce moment :cry:

Thomas G :zen:

Sdec25
Membre Irrationnel
Messages: 1002
Enregistré le: 17 Juin 2006, 00:24

par Sdec25 » 23 Juil 2006, 23:07

Peut-être qu'ils sont trop difficiles ?

raptor77
Membre Rationnel
Messages: 813
Enregistré le: 27 Mai 2006, 06:48

par raptor77 » 23 Juil 2006, 23:08

ou pas assez interressant?

nekros
Membre Irrationnel
Messages: 1507
Enregistré le: 30 Oct 2005, 18:57

par nekros » 23 Juil 2006, 23:12

raptor77 a écrit:ou pas assez interressant?


Vraiment sympa... :hum:

Thomas G :zen:

raptor77
Membre Rationnel
Messages: 813
Enregistré le: 27 Mai 2006, 06:48

par raptor77 » 23 Juil 2006, 23:13

Mais je rigolais , un peu d'humour voyons.

nekros
Membre Irrationnel
Messages: 1507
Enregistré le: 30 Oct 2005, 18:57

par nekros » 23 Juil 2006, 23:16

Ok, désolé !

Mais je suis sûr que tu peux le résoudre !
Sdec idem.

Considère

Thomas G :zen:

 

Retourner vers ⚔ Défis et énigmes

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 14 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite