Bonjour à la communauté mathématiques, auriez vous la gentillesse de
repondre à cette question, je vous en remercie par avance et à bientot
Soit (G,+, >=) un groupe abélien totalement ordonné On donne le nom
d'intervalle à tout sous ensemble I de G tel que x (appartient à) I, y
(appartient à) I et x <= y entrainent [x,y] inclus ds I
Montrer que si G est discret il existe un et un seul intervalle H de G
qui posséde la propriété d'etre un sous groupe isomorphe à (Z ,+)
- o -
Début de reponse : rappel de la définition d'un ensemble discret ,
qu'il admet un minorant , et comme c'est un intervalle il est borné
....
