Séries convergentes
Réponses à toutes vos questions après le Bac (Fac, Prépa, etc.)
-
Science
- Membre Relatif
- Messages: 228
- Enregistré le: 04 Fév 2008, 18:50
-
par Science » 31 Oct 2010, 16:13
Bonjour j'ai un petit problème avec l'exercice suivant :
Soit (Un) une suite positive et décroissante. Prouver que si la série de terme générale Un converge alors nUn tend vers 0.
J'ai commencé avec un raisonnement par contraposée vous pensez que c'est un bon début?
Cordialement
Science
-
Nightmare
- Membre Légendaire
- Messages: 13817
- Enregistré le: 19 Juil 2005, 17:30
-
par Nightmare » 31 Oct 2010, 16:24
Salut,
Ben, pour le moment j'en pense pas grand chose, je ne vois pas de preuve, juste un tout petit début d'idée de preuve.
Bref, le sujet à été traité récemment [url="http://www.maths-forum.com/mp-un-resultat-suites-111562.php"]ici[/url].
Une autre manière de faire non proposée dans le topic précédent :
Soit epsilon fixé. A partir d'un certain rang,

pour tout m et donc par décroissance,
U_{n+m}\le \epsilon)
. On peut conclure directement en passant à la limite sup étant donné que

, on a que
U_{n+m}=\limsup_{m}\; \frac{m+1}{n+m}\times (n+m) U_{n+m})
si bien que

et donc

-
Ben314
- Le Ben
- Messages: 21709
- Enregistré le: 11 Nov 2009, 21:53
-
par Ben314 » 31 Oct 2010, 16:24
Science a écrit:Bonjour j'ai un petit problème avec l'exercice suivant :
Soit (Un) une suite positive et décroissante. Prouver que si la série de terme générale Un converge alors nUn tend vers 0.
J'ai commencé avec un raisonnement par contraposée vous pensez que c'est un bon début?
Cordialement
Science
Oui, c'est un début tout à fait pertinent.
Sinon, si tu veut une preuve "directe", il y a plusieurs idées là :
http://www.maths-forum.com/showthread.php?t=111562
Qui n'entend qu'un son n'entend qu'une sonnerie. Signé : Sonfucius
-
Nightmare
- Membre Légendaire
- Messages: 13817
- Enregistré le: 19 Juil 2005, 17:30
-
par Nightmare » 31 Oct 2010, 16:29
Au passage, j'en profite pour donner cette généralisation (que j'ai déjà proposée sur le forum je crois) toujours intéressante à étudier :
Si
_{n})
est une suite de 1 et de -1 telle que

est convergente, toujours sous les hypothèses que
)
est une suite réelle décroissante, alors
(ton exercice étant le cas particulier où

pour tout n.)
-
Science
- Membre Relatif
- Messages: 228
- Enregistré le: 04 Fév 2008, 18:50
-
par Science » 31 Oct 2010, 16:56
Au fait je n'ai pas vu les séries de Cauchy en cours (mais je sais quand même ce que sait) donc je peux pas faire la preuve "directe"
Voilà ce que je fais si nUn ne tend pas vers 0 alors nécessairement la série de terme générale nUn diverge, à partir de là je dois en déduire que la série de terme général Un diverge (avec Un respectant les hypothèses) mais c'est là où je bloque
-
Nightmare
- Membre Légendaire
- Messages: 13817
- Enregistré le: 19 Juil 2005, 17:30
-
par Nightmare » 31 Oct 2010, 16:59
La preuve proposée par Girdav dans l'autre topic est la plus simple au niveau des connaissances requises.
-
girdav
- Membre Complexe
- Messages: 2425
- Enregistré le: 21 Nov 2008, 21:22
-
par girdav » 31 Oct 2010, 17:09
Science a écrit:Au fait je n'ai pas vu les séries de Cauchy en cours (mais je sais quand même ce que sait) donc je peux pas faire la preuve "directe"
Voilà ce que je fais si nUn ne tend pas vers 0 alors nécessairement la série de terme générale nUn diverge, à partir de là je dois en déduire que la série de terme général Un diverge (avec Un respectant les hypothèses) mais c'est là où je bloque
C'est normal tu affaiblis trop l'hypothèse (dire que

diverge est plus faible que dire que

ne tend pas vers

). Par exemple la série

diverge mais pas

.
-
Science
- Membre Relatif
- Messages: 228
- Enregistré le: 04 Fév 2008, 18:50
-
par Science » 31 Oct 2010, 17:49
Donc il faut que je démontre que la série de terme général Un diverge directement à partir du fait que nUn ne tende pas vers 0 sans passer par la série de terme général nUn?
-
girdav
- Membre Complexe
- Messages: 2425
- Enregistré le: 21 Nov 2008, 21:22
-
par girdav » 31 Oct 2010, 17:54
Oui, ça peut se faire. Par exemple on voit qu'il existe \delta>0 tel que pour une infinité d'indices

on a

.
Si on se donne

tel que

vois tu comment minorer

?
-
Science
- Membre Relatif
- Messages: 228
- Enregistré le: 04 Fév 2008, 18:50
-
par Science » 31 Oct 2010, 18:00
girdav a écrit:Oui, ça peut se faire. Par exemple on voit qu'il existe \delta>0 tel que pour une infinité d'indices

on a

.
Si on se donne

tel que

vois tu comment minorer

?
atttends pourquoi kUk est forcément plus grand que

?
-
girdav
- Membre Complexe
- Messages: 2425
- Enregistré le: 21 Nov 2008, 21:22
-
par girdav » 31 Oct 2010, 18:03
C'est par définition de la convergence, ou plutôt ici de la non convergence : on peut trouver un

tel que dès que l'on prend un entier

, on trouvera toujours un entier plus grand que

, disons

tel que

et les valeurs absolues s'en vont.
-
Science
- Membre Relatif
- Messages: 228
- Enregistré le: 04 Fév 2008, 18:50
-
par Science » 31 Oct 2010, 18:08
girdav a écrit:C'est par définition de la convergence, ou plutôt ici de la non convergence : on peut trouver un

tel que dès que l'on prend un entier

, on trouvera toujours un entier plus grand que

, disons

tel que

et les valeurs absolues s'en vont.
Donc on pourrait minorer ta somme par delta/k ?
-
girdav
- Membre Complexe
- Messages: 2425
- Enregistré le: 21 Nov 2008, 21:22
-
par girdav » 31 Oct 2010, 18:13
"Ma" somme est minorée par

car on somme

termes tous plus grands que

.
Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 27 invités