Probabilitè
Réponses à toutes vos questions après le Bac (Fac, Prépa, etc.)
-
ferfelue
- Messages: 9
- Enregistré le: 14 Jan 2010, 18:44
-
par ferfelue » 24 Jan 2010, 17:02
un joueur lance une pièce de monnaie il pari sur pile il obtient pile.
quelle est la probabilité qu'il soit un tricheur?
-
Ben314
- Le Ben
- Messages: 21709
- Enregistré le: 11 Nov 2009, 21:53
-
par Ben314 » 24 Jan 2010, 17:12
Salut,
L'énoncé du problème est un peu ambigü. J'aurai tendance à considérer que l'on a :
Proba de pile sachant que c'est un tricheur = 1
Proba de pile sachant que ce n'est pas un tricheur = 1/2
Cela signifie que c'est un exercice sur les proba conditionelles.
Voit tu comment trouver la proba que c'est un tricheur ?
Qui n'entend qu'un son n'entend qu'une sonnerie. Signé : Sonfucius
-
Doraki
- Habitué(e)
- Messages: 5021
- Enregistré le: 20 Aoû 2008, 11:07
-
par Doraki » 24 Jan 2010, 17:15
En tout cas moi j'vois pas.
-
Ben314
- Le Ben
- Messages: 21709
- Enregistré le: 11 Nov 2009, 21:53
-
par Ben314 » 24 Jan 2010, 17:16
Doraki a écrit:En tout cas moi j'vois pas.
Ben, en fait,.... moi non plus !!!!
Qui n'entend qu'un son n'entend qu'une sonnerie. Signé : Sonfucius
-
Finrod
- Membre Irrationnel
- Messages: 1944
- Enregistré le: 24 Sep 2009, 10:00
-
par Finrod » 24 Jan 2010, 17:17
Il y a une formule pour obtenir P(A sachant B) en fonction de P(B sachant A). Il suffit de l'appliquer.
Je ne me souviens plus de son nom, je vais essayer de retrouver.
-
Ben314
- Le Ben
- Messages: 21709
- Enregistré le: 11 Nov 2009, 21:53
-
par Ben314 » 24 Jan 2010, 17:22
Comme ch'uis un peu con, j'ai fait un tableau avec 2 lignes (pile, face) et deux colonnes (tricheur ou non tricheur), mais il me manque une équation...
J'ai proba de tricheur sachant PILE = (1-2b)/(1-b)
où b=proba de Pile et non tricheur=proba de Face et non tricheur...
Qui n'entend qu'un son n'entend qu'une sonnerie. Signé : Sonfucius
-
Finrod
- Membre Irrationnel
- Messages: 1944
- Enregistré le: 24 Sep 2009, 10:00
-
par Finrod » 24 Jan 2010, 17:23
=[2P(A\cap B)-P(B)P(A/B)]/P(A))
en fait.
A = "Obtiens pile"
B = "a triché"
Ici
 = 1)
,
=1/2)
donc
Il y a deux fois plus de chance qu'il ai triché sachant qu'il a gagné.
edit : vous avez surement noté qu'il y a un problème qq part. J'essaie de trouver.
-
Ben314
- Le Ben
- Messages: 21709
- Enregistré le: 11 Nov 2009, 21:53
-
par Ben314 » 24 Jan 2010, 17:27
D'où sort ton p(A)=1/2 ?
Perso, la seule chose qui me vient à l'esprit est de rajouter une hypothèse.
Parmi les moins "complètement con" qui me viennent à l'esprit, il y a :
proba de tricheur = proba de non tricheur = 1/2
Cela me donne b=1/4 et donc
Proba de tricheur sachant Pile = 2/3
Qui n'entend qu'un son n'entend qu'une sonnerie. Signé : Sonfucius
-
Finrod
- Membre Irrationnel
- Messages: 1944
- Enregistré le: 24 Sep 2009, 10:00
-
par Finrod » 24 Jan 2010, 17:31
C'est vrai qu'a priori on ne suppose pas que la pièce n'est pas pipée. Donc on peut faire les deux cas.
reste que j'ai un problème métaphysique là :
On a
 = P(A\cap B)/P(A)=P(B)/P(A))
si l'on considère que
= P(B))
(S'il a triché, il obtiens pile à coup sûr...)
Mais si P(B) est plus grand que P(A) -_-! bizarre...
Edit : De plus, s'il triche en pipant la pièce, l'exo se pose totalement différemment.
-
Doraki
- Habitué(e)
- Messages: 5021
- Enregistré le: 20 Aoû 2008, 11:07
-
par Doraki » 24 Jan 2010, 17:36
On peut dire des trucs rigolos.
Si p est la probabilité qu'on soit face à un tricheur a priori,
alors la probabilité p' qu'on soit face à un tricheur a posteriori est 2p/(p+1).
-
houda 20
- Membre Relatif
- Messages: 252
- Enregistré le: 27 Nov 2009, 14:18
-
par houda 20 » 24 Jan 2010, 17:39
salut Ben
oui, c'est un exercice sur la probabilité conditionnelle, en fait tout le problème là est comment choisir l'ensemble fondamental
après normalement on utilise Bayes, car c'est on peut le considérer comme un pb de probabilité de cause, non
-
Ben314
- Le Ben
- Messages: 21709
- Enregistré le: 11 Nov 2009, 21:53
-
par Ben314 » 24 Jan 2010, 17:40
Pour le P(A)=1/2, ce n'est pas un problème de piéce pipée, c'est le problème qu'il y a un tricheur.
On ne sait pas comment il triche, maison peut supposer que, quand c'est lui qui jette la piéce, il a pile à tout les coups. D'où
proba(Pile) = proba(Tricheur)*proba(Pile sachant tricheur)+proba(non Tricheur)*proba(Pile sachant non tricheur)
On a évidement proba(non Tricheur) = 1-proba(tricheur) = 1-x
J'ai tendance à considérer que (mais ce n'est pas obligatoire) :
proba(Pile sachant tricheur)=1 et proba(Pile sachant non tricheur)=1/2
d'où proba(pile)=x*1+(1-x)*1/2=1/2+1/2x > 1/2
ce qui me parrait normal : il y a un tricheur donc la proba de "gagner" est supérieure à ce qu'elle devrait être s'il n'était pas là...
Qui n'entend qu'un son n'entend qu'une sonnerie. Signé : Sonfucius
-
houda 20
- Membre Relatif
- Messages: 252
- Enregistré le: 27 Nov 2009, 14:18
-
par houda 20 » 24 Jan 2010, 17:40
salut imene
-
houda 20
- Membre Relatif
- Messages: 252
- Enregistré le: 27 Nov 2009, 14:18
-
par houda 20 » 24 Jan 2010, 17:43
là je ne vois pas comment cobinet entre {pile,face}
et {tricheur, non tricheur}
tu sais Ben je pense à considérer l'ens fondamental suivent, peut etre ça facilite les chose
voilà {pt, p tbarre, ftbarre, ft}
ce sont tout les résultat possibles
-
Ben314
- Le Ben
- Messages: 21709
- Enregistré le: 11 Nov 2009, 21:53
-
par Ben314 » 24 Jan 2010, 17:47
Je détaille ma façon de voir les choses :
probas :
_____ Tricheur|non Tricheur
Pile...|.....a.....|.........b.........|
Face..|.....c.....|.........d.........|
1) a+b+c+d=1 [ ça, c'est totalement sûr ]
2) b=d [ non tricheur => équibrobabilité : assez sûr]
3) c=0 [ tricheur => gain assuré : pas complètement clair ]
Pour le moment on n'a pas assez d'équations, je proposerais de rajouter
4) a+c=b+d [ tricheur<->non tricheur équiprobable : pas évident du tout]
J'obtient alors a=1/2 ; c=0 ; b=d=1/4
d'ou proba(tricheur sachant pile)= a/(a+b) = 2/3
Qui n'entend qu'un son n'entend qu'une sonnerie. Signé : Sonfucius
-
Finrod
- Membre Irrationnel
- Messages: 1944
- Enregistré le: 24 Sep 2009, 10:00
-
par Finrod » 24 Jan 2010, 17:50
Ok j'ai mon erreur, P(A) n'est en effet pas connu, j'ai confondu avec
)
Mais on a
Si je note p la proba de triche et si la pièce n'est pas pipée
=1/2)
, j'obtiens que
=(p+1)/2)
= 2\frac{p}{p+1})
ce coup ci c'est bon . Si p=1/2, je retrouve le résultat de Ben.
-
Finrod
- Membre Irrationnel
- Messages: 1944
- Enregistré le: 24 Sep 2009, 10:00
-
par Finrod » 24 Jan 2010, 17:54
On ne peut pas faire mieux sans connaitre p , non ?
-
Ben314
- Le Ben
- Messages: 21709
- Enregistré le: 11 Nov 2009, 21:53
-
par Ben314 » 24 Jan 2010, 17:57
Effectivement, il faut soit connaitre p, soit une autre information donnant une équation de plus (déjà que 'mon' équation c=0 est un peu 'gratuite' : rien ne dit que le tricheur gagne a tout les coups)
Qui n'entend qu'un son n'entend qu'une sonnerie. Signé : Sonfucius
-
Finrod
- Membre Irrationnel
- Messages: 1944
- Enregistré le: 24 Sep 2009, 10:00
-
par Finrod » 24 Jan 2010, 18:01
Oui on peut rajouter le paramètre q de proba de victoire en trichant (aprés tout aucune raison qu'il gagne à tous les coups)
On peut aussi piper la pièce, qui aura une proba r de faire pile...
On peut aussi oublier le tricheur et poser la question : Qu'elle est la probabilité que la pièce ai été pipée au départ ?
Là encore, le résultat est fonction de la proba qu'elle ai été pipée et du coef de pipage.
-
ferfelue
- Messages: 9
- Enregistré le: 14 Jan 2010, 18:44
-
par ferfelue » 24 Jan 2010, 18:16
Oui mais
on ne pouvais pas avoir 1 car sinon la probabilité qu'il soit un tricheur devient un Evénement certain ce qui est faut merci a tous
Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 49 invités