Matrice - binome de newton

Réponses à toutes vos questions après le Bac (Fac, Prépa, etc.)
ludwig
Membre Naturel
Messages: 25
Enregistré le: 21 Avr 2006, 19:20

matrice - binome de newton

par ludwig » 06 Jan 2007, 20:17

Bonjour, voici l'énoncé de mon exo:

Soit la matrice A --> 1ère ligne: 1 a b ; 2ème ligne 0 1 a et 3ème ligne 0 0 1
et soit la matrice B --> 1ère ligne 0 1 1 ; 2ème ligne: 0 0 1 et 3ème ligne 0 0 0

1) exprimer A en fonction des matrices I3, B et B²
2) Calculer B^3 puis B^n pour tout entier n > (ou égal) 3
3 En réécrivant la décomposition de la question 1 sous la forme A = M + N où M et N sont deux matrices bien choisies, calculer A^n pour tout entier N > (ou égal) 1

Voilà, pour la 1ère et 2 ème question ça va à peu près mais c'est la troisième que je ne saisis pas, le prof utilise la méthode du binome de newton mais le corrigé est imcompréhensible. Si qqn peut m'aider...



jose_latino
Membre Relatif
Messages: 320
Enregistré le: 25 Juil 2006, 21:09

par jose_latino » 06 Jan 2007, 20:39

Donne-nous la décomposition de la question 1 pour t'aider. Et la réponse 2 aussi.

jose_latino
Membre Relatif
Messages: 320
Enregistré le: 25 Juil 2006, 21:09

par jose_latino » 06 Jan 2007, 20:44

Si tu mets \left(\matrix{a1&b1&c1\\a2&b2&c2\\a3&b3&c3\\ }\right) entre et ça te donne le suivant:
:id:

ludwig
Membre Naturel
Messages: 25
Enregistré le: 21 Avr 2006, 19:20

par ludwig » 06 Jan 2007, 20:56

on a pour B²= première ligne 0 0 1 puis 0 aux restes et B^3=0 donc pour la 2) si n > 3; B^n=B^(n-3)*B^3 or B^3=0 alors B^n = 0

C'est ce que j'ai compris

jose_latino
Membre Relatif
Messages: 320
Enregistré le: 25 Juil 2006, 21:09

par jose_latino » 06 Jan 2007, 21:45





Tu ne nous as pas donné la prémière réponse, mais c'est difficile remarquer que c'est:
(*)
ludwig a écrit:3 En réécrivant la décomposition de la question 1 sous la forme A = M + N où M et N sont deux matrices bien choisies, calculer A^n pour tout entier N > (ou égal) 1

Pour utiliser le binôme de Newton les matrices doivent commuter, mais c'est pas difficile de remarquer que tous commutent, donc d'après (*), on peut choisir la matrice qui devient 0 plus rapidement comme , dans ce cas , donc , applique la formule de Newton maintenant, n'oublie pas que, comme tu as bien dit, , donc , (justifier: Démontre que )

ludwig
Membre Naturel
Messages: 25
Enregistré le: 21 Avr 2006, 19:20

par ludwig » 06 Jan 2007, 22:17

Ok !! je te remercie vraiment pour ta réponse jose latino.

 

Retourner vers ✯✎ Supérieur

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 36 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite