Loi uniforme

Réponses à toutes vos questions après le Bac (Fac, Prépa, etc.)
Dlzlogic
Membre Transcendant
Messages: 5273
Enregistré le: 14 Avr 2009, 12:39

par Dlzlogic » 28 Jan 2012, 19:10

Si tu savais comme je m'en fiche des proba. Tes propos sont un peu limite, mais bon, on s'y fait.
Moi, je parle juste de la répartition des écarts lors d'expériences aléatoires. J'essaye de me pas me mêler de ce que je ne connais pas.



Sylviel
Membre Transcendant
Messages: 6466
Enregistré le: 20 Jan 2010, 12:00

par Sylviel » 29 Jan 2012, 14:25

C'est bien le problème : tu te mêles de choses que tu ne comprends pas, tu y appliques les recettes que tu connais, et tu t'étonnes qu'on se permette de dire "c'est faux".

Il y a une différence entre :
- une variable aléatoire. C'est à dire une experience aléatoire. Qui admet une multitude de loi de proba possible (un dé peut être pipé par exemple : s'il ne l'est pas tu auras une loi uniforme, sinon ce n'est pas le cas, tu auras une loi d'un autre type).
- la moyenne empirique d'une série de réalisations de cette variable aléatoire.

Cette moyenne empirique a deux propriétés :
- elle tends vers l'espérance (moyenne réelle), sous des conditions très faible et en un sens assez fort. C'est la loi des grands nombre.
- l'écart entre la moyenne empirique et la moyenne réelle ressemble à une loi normale (sous conditions un peu plus forte) : c'est le théorème de la limite centrale.

Et ce que tu refuses d'entendre, et qu'on se tue à te réexpliquer c'est que ce dont tu parles systématiquement c'est de la moyenne empirique. Pour être précis si Xi est une variable aléatoire suivant une certaine loi L (la même pour tous les i) indépendantes de Xj, alors tu parles de la loi de

et non de celle de Xi.

Donc tout ce que je me tue à te faire comprendre c'est que tu mélanges ces deux notions : un tirage, et une moyenne de tirages. La moyenne des tirages ressemble quasi-systématiquement à une loi normale (encore une fois essaie avec une loi de cauchy, tu vas rire...) ; mais un tirage individuel peut suivre une loi qui n'a rien de normale ! Pour revenir aux villes : la position de chaque ville n'a rien d'une gaussienne : chaque point du carré à autant de chance d'etre pris.

Si je suis cassant c'est parce que tu fais preuve soit d'un esprit très obtus, soit de mauvaise foi caractérisée. Et de mépris envers les autres intervenants, ici et sur mathématiques.net, qui ont de longues études de maths derrière eux et qui essaie tant bien que mal de te faire comprendre des choses...
Merci de répondre aux questions posées, ce sont des indications pour vous aider à résoudre vos exercices.

Dlzlogic
Membre Transcendant
Messages: 5273
Enregistré le: 14 Avr 2009, 12:39

par Dlzlogic » 29 Jan 2012, 15:23

Bonjour,
Deux choses
1- @ Fatal_error. Il m'a demandé de faire un tirage de dés. J'en ai fait assez pour ne pas recommencer. Il se trouve que j'ai regardé une cours où il y avait un exemple de tirage avec un dé non pipé, par comparaison avec le paragraphe précédent qui donnait un tirage avec un dé pipé.
Apparemment c'est une loi "uniforme", puisque c'est le principe de la démonstration.
Avec mon esprit mal tourné, j'ai fait des calculs de distribution. Le résultat est assez intéressant, il n'y a que 2% de probabilité que ce jeu résulte d'un tirage aléatoire. Donc il y a 98% de chances que cette liste soit crée de toute pièce. Je vais en demander confirmation à l'auteur.

2-Oh, non, je ne mélange par tirage et moyenne de tirage.
Si le tirage est tel que la moyenne tend vers 0, comme par exemple le tir au pistolet, alors les écarts à la moyenne seront les écarts au centre le la cible.
Si le tirage est celui d'une pêche aléatoire, c'est à dire sans qu'il n'y ait eu d'incident comme l'évasion de poissons d'élevage (ref sur le présent forum), alors la moyenne à prendre en compte est la moyenne des tailles des poissons pêchés, et on calcule et compte les écarts à la taille moyenne. Si la pêche est effectivement aléatoire (pas d'évadés) alors la répartition des nombres d'écarts par classe est selon la loi normale. Si une sardine s'est fourvoyée par hasard, sa taille sera telle que l'écart à la moyenne sera supérieure à 4ep, donc, généralement éliminée de l'observation.

Petit détail important. C'est la formule citée qui me le rappelle. Si la valeur vraie des écarts, c'est à dire les écarts à la moyenne vraie, ou elle-même suivant le cas, est connue, alors, le dénominateur (diviseur de la somme des carrés) est bien N, nombre de mesures, sinon, et c'est le cas le plus fréquent, ce dénominateur est (N-1).

Tu fais souvent référence à des étapes universitaires, je tiens à te préciser que le gouvernement a bien voulu m'octroyer un diplôme, et que justement ces notions font partie des bases fondamentales incontournables. Tu vas probablement dire que vers les années 70, on distribuait ces diplômes dans des pochettes surprises, c'est ton droit.

Sylviel
Membre Transcendant
Messages: 6466
Enregistré le: 20 Jan 2010, 12:00

par Sylviel » 29 Jan 2012, 15:46

Alors qu'est-ce que c'est une loi de Bernouilli ? (va voir dans ton poly que tu portes aux nues...)
C'est une loi normale ?

Pour ce qui est des diplômes : je ne conteste pas que tu en ai un, ce que je conteste c'est qu'il te permette de généraliser des choses que tu croies maîtriser, et de remettre en questions nos compétences. Et la formation en proba de l'ENSG n'est pas franchement une référence... (je parle en connaissance de cause).

Bon j'abandonne pour de vrai cette fois. Reste dans tes certitudes erronées...
Merci de répondre aux questions posées, ce sont des indications pour vous aider à résoudre vos exercices.

Dlzlogic
Membre Transcendant
Messages: 5273
Enregistré le: 14 Avr 2009, 12:39

par Dlzlogic » 29 Jan 2012, 16:14

Je ne connaissais pas l'ENSG. Effectivement si les gens avec qui j'ai échangé que d'autres forum viennent de là, c'est pas vraiment une référence, pas seulement en proba qu'ailleurs. Je ne pense pense pas que cette école, pas plus qu'une autre, ne donne un DPLG.
Si j'ai bien compris, la loi de Cauchy, c'est tel que l'on étudie X/Y, avec X et Y des variables aléatoires.
Je regarde cela.

Sylviel
Membre Transcendant
Messages: 6466
Enregistré le: 20 Jan 2010, 12:00

par Sylviel » 29 Jan 2012, 16:30

Non une loi de Cauchy c'est une loi de densité connue, et il se trouve qu'on peut la simuler comme le quotient de deux gaussiennes indépendantes. Mais il faudrait commencer par comprendre la différence entre loi uniforme et loi gaussienne et arrêter de parler de "suite de nombre aléatoire" comme s'il n'y avait qu'un seul type d'aléa :dodo:
Merci de répondre aux questions posées, ce sont des indications pour vous aider à résoudre vos exercices.

Dlzlogic
Membre Transcendant
Messages: 5273
Enregistré le: 14 Avr 2009, 12:39

par Dlzlogic » 29 Jan 2012, 17:38

Bon, je ne sais pas ce qu'est une loi de Cauchy, et d'ailleurs, je ne sais pas en quoi ça me concerne (cf remarque précédente).
Je n'ai parlé que d'évènement aléatoire et de rien d'autre.
Voila le résultat avec 100 tirages :
Etude des variables de Cauchy (X/Y)
Nombre = 100 Moyenne = 0.34 emq=0.21 ep=0.14
Classe 1 nb= 0 0.00% théorique 0.35%
Classe 2 nb= 0 0.00% théorique 2%
Classe 3 nb= 10 10.00% théorique 7%
Classe 4 nb= 19 19.00% théorique 16%
Classe 5 nb= 24 24.00% théorique 25%
Classe 6 nb= 22 22.00% théorique 25%
Classe 7 nb= 15 15.00% théorique 16%
Classe 8 nb= 7 7.00% théorique 7%
Classe 9 nb= 3 3.00% théorique 2%
Classe 10 nb= 0 0.00% théorique 0.35%
La moyenne des tirages ressemble quasi-systématiquement à une loi normale (encore une fois essaie avec une loi de cauchy, tu vas rire...)
Je ne sais pas où je dois rire.
Source et exécutable à ta disposition.

Sylviel
Membre Transcendant
Messages: 6466
Enregistré le: 20 Jan 2010, 12:00

par Sylviel » 29 Jan 2012, 19:59

Tu as simulé comment tes variables X et Y ? Avec un rand() ? dans ce cas ce sont des uniformes, pas des lois normales...

Le gag avec une loi de cauchy c'est qu'elle n'a pas de "vraie moyenne", ce qui perturbe un peu toute ta théorie "d'écart à la moyenne"... Du coup à chaque jeu de simulations tu vas avoir tes moyennes empiriques et tes écarts types empiriques qui varient violemment.

Une remarque sur l'ENSG : il me semblait que c'était l'école directement rattachée à l'IGN et qui formait donc le principal de ses ingénieurs, est-ce que je me trompe ?
Merci de répondre aux questions posées, ce sont des indications pour vous aider à résoudre vos exercices.

Dlzlogic
Membre Transcendant
Messages: 5273
Enregistré le: 14 Avr 2009, 12:39

par Dlzlogic » 29 Jan 2012, 20:10

rand() donne une expérience aléatoire, donc sa répartition suit la loi normale.
Une loi normale se distingue d'une autre par un rapport d'échelle : il n'y a aucun paramètre. Donc, il n'y a qu'une et une seule loi normale.
Concernant cette école, j'en sais rien. J'ai découvert son nom tout à l'heure.
Mais si on veut en parler, ce sera plutôt en privé.

Mathusalem
Membre Irrationnel
Messages: 1837
Enregistré le: 14 Sep 2008, 03:41

par Mathusalem » 29 Jan 2012, 20:32

Dlzlogic a écrit:rand() donne une expérience aléatoire, donc sa répartition suit la loi normale.


Non. Rand() te renvoie un nombre choisi parmi 0 et 1 suivant distribution [uniforme].
Si tu divises ton intervalle [0,1] en 6 (lancés de dé), alors tu as, par uniformité de la distribution, 1/6 chance de tirer un nombre de l'intervalle [0,1/6[, 1/6 dans [1/6,2/6[, etc..

Ce qui fait qu'en moyenne, si tu tires souvent le rand() chaque 'intervalle' doit apparaître un nombre identique de fois (à cause de la loi uniforme). Si rand() suivait une loi normale centrée sur 1/2 par exemple, tu auras beaucoup plus de rand() qui auraient leur valeur située autour de 1/2. Ainsi, si tu redivises ton intervalle en 6 (lancé de dé p.ex) le 3 et le 4 sortiraient beaucoup plus souvent que les autres.

Ce qui suit une loi normale, c'est par exemple, l'écart entre la fréquence théorique de chaque face et la fréquence réelle de chaque face. Il y a beaucoup de face qui ont leur fréquence proche de la fréquence théorique et peu loin - pour schématiser.

Mais dans l'exemple de rand(), pour calculer ta fréquence théorique, tu dois dire que la variable rand() suit une loi uniforme. Autrement tu peux pas calculer ta fréquence théorique.

Note : cette seule phrase que je viens de citer discrédite déjà en grande partie tout ce que tu dis. Apprécie le fait qu'on persiste quand même à vouloir t'expliquer. Note 2 : Sylviel t'a quand même dit je pense 150 fois qu'il n'y a pas qu'un type d'aléa.

Sylviel
Membre Transcendant
Messages: 6466
Enregistré le: 20 Jan 2010, 12:00

par Sylviel » 29 Jan 2012, 20:45

Bon : c'est mon dernier message sur ce fil.

Ce que tu affirmes est en contradiction avec tous les bouquins, cours, ou poly qui parle de proba ou de stat. On te l'as dit mille fois. Maintenant tu connais mieux que nous comment fonctionne la fonction rand() (pour info j'en ai codé une en cours un jour...), tu connais mieux les probas que nous puisque tu as eu un diplome de géomètre il y a 40 ans (je n'ai qu'un M2 de proba, et un diplome d'ingé, et fais une thèse où j'utilise les probas au quotidien; j'enseigne d'ailleurs en école d'ingé sur ces thèmes), tu connais mieux que les intervenant des mathématiques.net (dont un certains nombre sont enseignant-chercheur en proba) et tu connais mieux que même tes profs (puisque tu es en contradiction avec le poly dont tu as donné le lien).

Persiste et signe, si tu veux, mais s'il te plaît retiens toi d'intervenir dans des fils concernant les probas.
Merci de répondre aux questions posées, ce sont des indications pour vous aider à résoudre vos exercices.

Dlzlogic
Membre Transcendant
Messages: 5273
Enregistré le: 14 Avr 2009, 12:39

par Dlzlogic » 29 Jan 2012, 22:48

@ Sylviel,
J'aimerais tellement que cette discussion reste sur un plan positif, constructif et courtois.
Je suis maladroit, oui certainement, je suis incompétent, non je ne pense pas, je suis têtu, oui apparemment.
Je cite simplement une phrase du mail que vient de m'envoyer un ancien professeur (à la retraite) et qui connait ce genre de technique comme moi. (le texte complet par MP si tu veux).
Je comprends donc votre position de topographe, mais il faut convenir que certainement beaucoup de statisticiens ignorent totalement nos techniques et notre souci de la précision.


@ Mathusalem,
Concernant la loi uniforme, avec un histogramme ça parait vrai, mais par le calcul, si c'est aléatoire, c'est forcément la loi normale. Pour mémoire, une version destinée aux jeux a été mise au point, un tirage aléatoire : rand() donne environ 2% d'incertitude, cette version donne, d'après leur affirmation, confirmée par des essais, la distribution normale à chaque tirage.

Mathusalem
Membre Irrationnel
Messages: 1837
Enregistré le: 14 Sep 2008, 03:41

par Mathusalem » 29 Jan 2012, 23:24

Dlzlogic a écrit:@ Mathusalem,
Concernant la loi uniforme, avec un histogramme ça parait vrai, mais par le calcul, si c'est aléatoire, c'est forcément la loi normale.



Non. Sur un histogramme ça paraît la loi uniforme parce que c'est la loi uniforme. Si c'était une loi normale, tu verrais un histograme de distribution normale, et pas uniforme. La distribution de la variable aléatoire rand() est uniforme. Les calculs que tu fais après dessus ne parlent pas de la distribution de la variable aléatoire ! Ils parlent d'autre chose.
Fais un plot histogramme avec 100 tirages de rand(). Ensuite fais 100 tirages de e^(-rand() - a)/sigma)^2 et tu verras dans un cas une distribution uniforme, dans l'autre cas une distribution normale. Ensuite, tu te rendras compte que dans les deux cas tu fais des calculs, mais qui parlent d'autre chose que de la distribution en soit !

Dlzlogic a écrit:Pour mémoire, une version destinée aux jeux a été mise au point, un tirage aléatoire : rand() donne environ 2% d'incertitude, cette version donne, d'après leur affirmation, confirmée par des essais, la distribution normale à chaque tirage.


Ça veut dire quoi que rand() donne 2% d'incertitude ? Incertitude sur quoi par rapport à quoi ? Un tirage aléatoire, mais de quelle loi ? Un seul tirage te donne la loi normale ?

[EDIT] : c'est pas comme ça qu'on simule une v.a de loi normale, c'est plus délicat. Merci pour le rappel Sylviel.

beagle
Habitué(e)
Messages: 8746
Enregistré le: 08 Sep 2009, 14:14

par beagle » 30 Jan 2012, 09:13

Perso Dlzlogic je t'aime bien, mais tant que tu ne feras pas l'effort d'utiliser les définitions mathématiques,
tu resteras condamné à raconter du n'importe quoi et à te faire rentrer dedans.

Tu devrais commencer par ceci,
c'est la définition de loi de probabilité:
wiki:
"En théorie des probabilités et en statistique, une loi de probabilité décrit soit les probabilités de chaque valeur d'une variable aléatoire (quand la variable aléatoire est discrète), soit la probabilité que la variable aléatoire appartienne à un intervalle arbitraire (quand la variable est continue)[1]. La loi de probabilité décrit l'ensemble des valeurs qu'une variable aléatoire peut atteindre et la probabilité que la valeur de la variable aléatoire soit dans n'importe quel sous ensemble (mesurable) de cet ensemble."

relis cela plusieurs fois tranquillement,
et tu verras que lors d'une loi de proba uniforme,
chaque proba de sortie est la mème, cette proba de sortie n'a rien de gaussien,
et chaque sortie sera aléatoire sans ètre gaussien.

Maintenant si tu veux commencer à réfléchir uniquement après n tirages, et regarder les fréquences observées sorties, et que tu observes du Gauss (encore que cela soit approximer par Gauss, mais c'est pas Gauss, mais ne pinaillons pas),
c'est que la loi de distribution des fréquences observées après n tirages est de type Gauss.
Mais cela n'est pas la loi de proba des évènements de la loi uniforme.

tant que tu ne feras pas cette différence, tu feras des abus de langage, et des erreurs comme de dire le rand est aléatoire donc gaussien donc mon expérience de loi de Cauchy est valable.
Et bien non.
Mais c'est quand tu veux!
L'important est de savoir quoi faire lorsqu'il n' y a rien à faire.

Dlzlogic
Membre Transcendant
Messages: 5273
Enregistré le: 14 Avr 2009, 12:39

par Dlzlogic » 30 Jan 2012, 12:38

Bonjour Beagle,
On peut jouer à un petit jeu facile.
Tu me donnes des listes de résultats de tirages de dé à 6 faces. C'est à dire 6 nombres résultat de plusieurs tirages, disons une centaine par jeu.
Parmi cette liste de résultats, tu glisses des résultats qui ne correspondent pas réellement à un tirage réel, en d'autre termes, tu "triches", tu glisses des intrus.
Bien sûr tu peux te faire aider.

Et moi, j'essaye de trouver les listes falsifiées. D'accord, ça parait juste ?

Mathusalem
Membre Irrationnel
Messages: 1837
Enregistré le: 14 Sep 2008, 03:41

par Mathusalem » 30 Jan 2012, 13:24

Dlzlogic a écrit:Bonjour Beagle,
On peut jouer à un petit jeu facile.
Tu me donnes des listes de résultats de tirages de dé à 6 faces. C'est à dire 6 nombres résultat de plusieurs tirages, disons une centaine par jeu.
Parmi cette liste de résultats, tu glisses des résultats qui ne correspondent pas réellement à un tirage réel, en d'autre termes, tu "triches", tu glisses des intrus.
Bien sûr tu peux te faire aider.

Et moi, j'essaye de trouver les listes falsifiées. D'accord, ça parait juste ?


Ta mesure pour la falsification étant que la fréquence de la face N s'écarte de plus de 3 ou 5'sigmas' de la fréquence théorique ?

Dlzlogic
Membre Transcendant
Messages: 5273
Enregistré le: 14 Avr 2009, 12:39

par Dlzlogic » 30 Jan 2012, 13:34

Mathusalem a écrit:Ta mesure pour la falsification étant que la fréquence de la face N s'écarte de plus de 3 ou 5'sigmas' de la fréquence théorique ?

Je pense avoir déjà répondu très largement et de façon très détaillée à cette question, avec de nombreux exemples.
Je ne sais pas copier l'adresse d'une réponse existante.

Mathusalem
Membre Irrationnel
Messages: 1837
Enregistré le: 14 Sep 2008, 03:41

par Mathusalem » 30 Jan 2012, 13:51

Dlzlogic a écrit:Je pense avoir déjà répondu très largement et de façon très détaillée à cette question, avec de nombreux exemples.
Je ne sais pas copier l'adresse d'une réponse existante.


Ce que j'essaye de te faire cracher, c'est que la distribution du lancé de dé est uniforme, et que tu l'utilises dans tes calculs, et pas gaussienne. Essaye quand même de répondre, en principe, comment tu procèdes.

Dlzlogic
Membre Transcendant
Messages: 5273
Enregistré le: 14 Avr 2009, 12:39

par Dlzlogic » 30 Jan 2012, 14:08

Mathusalem a écrit:Ce que j'essaye de te faire cracher, c'est que la distribution du lancé de dé est uniforme, et que tu l'utilises dans tes calculs, et pas gaussienne. Essaye quand même de répondre, en principe, comment tu procèdes.

Code: Tout sélectionner
 180  174  175  163  153  155    emq=10.33
oo  -4ep  -3ep -2ep -ep   0    ep   2ep  3ep  4ep  oo
   0%    2%   7%  16%  25%  25%  16%   7%   2%    0%
    0    0    0  308  163    0  349  180    0    0
Si j'ai bien compris, tu veux jouer aussi, mais tu veux savoir comment tricher.

Mathusalem
Membre Irrationnel
Messages: 1837
Enregistré le: 14 Sep 2008, 03:41

par Mathusalem » 30 Jan 2012, 14:17

Dlzlogic a écrit:
Code: Tout sélectionner
 180  174  175  163  153  155    emq=10.33
oo  -4ep  -3ep -2ep -ep   0    ep   2ep  3ep  4ep  oo
   0%    2%   7%  16%  25%  25%  16%   7%   2%    0%
    0    0    0  308  163    0  349  180    0    0
Si j'ai bien compris, tu veux jouer aussi, mais tu veux savoir comment tricher.


J'essaie de te faire comprendre.

T'as apparemment fait 1000 tirages de rand() que tu as rangé dans les intervalles [0,1/6[, [1/6,2/6[, ...[5/6,1]

Tu comptes combien de rand() tombent dans le 1er, 2è..6è intervalle et ça te donne
180 174 175 163 153 155.

Ensuite tu fais quoi exactement ?

 

Retourner vers ✯✎ Supérieur

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 39 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite