Estimateur vraisemblance

Réponses à toutes vos questions après le Bac (Fac, Prépa, etc.)
Raven
Membre Relatif
Messages: 110
Enregistré le: 15 Avr 2012, 14:42

Estimateur vraisemblance

par Raven » 01 Fév 2014, 23:50

Bonsoir , voilà un exercice que je n'arrive pas à débuter .

On considère des variables aléatoires X,X2,..Xn qui sont indépendantes de même loi gaussienne de paramètre de paramètres m et sigma². L'espérance m est connue & on souhaite estomer l'écart type sigma .

1) trouver l'estimateur du max de vraisemblance pour sigma pour sigma
2) dans le cas où n=16 , calculer P(estimateur sigma au carré> 2sigma², qui est la probabilité que le carré de l'estimateur obtenu soit plus grand que le double de la variance .

La question j'en suit à l'étape de la dérivée de LnL(sigma,...,n) par rapport à sigma et je n'ai que -2Ln(2sigma) , ça me paraît bizarre ...

Merci de m'aider



DamX
Membre Rationnel
Messages: 630
Enregistré le: 02 Oct 2012, 13:12

par DamX » 03 Fév 2014, 10:47

Raven a écrit:Bonsoir , voilà un exercice que je n'arrive pas à débuter .

On considère des variables aléatoires X,X2,..Xn qui sont indépendantes de même loi gaussienne de paramètre de paramètres m et sigma². L'espérance m est connue & on souhaite estomer l'écart type sigma .

1) trouver l'estimateur du max de vraisemblance pour sigma pour sigma
2) dans le cas où n=16 , calculer P(estimateur sigma au carré> 2sigma², qui est la probabilité que le carré de l'estimateur obtenu soit plus grand que le double de la variance .

La question j'en suit à l'étape de la dérivée de LnL(sigma,...,n) par rapport à sigma et je n'ai que -2Ln(2sigma) , ça me paraît bizarre ...

Merci de m'aider


Bonjour,

écris voir ton calcul, parce que non il n'y a pas que ce type de terme, il y a aussi un terme faisant intervenir les réalisations Xn. Repars de la densité de la gaussienne :

et déroule le calcul pour voir où tu bloques.

Damien

Raven
Membre Relatif
Messages: 110
Enregistré le: 15 Avr 2012, 14:42

par Raven » 05 Fév 2014, 23:31

DamX a écrit:Bonjour,

écris voir ton calcul, parce que non il n'y a pas que ce type de terme, il y a aussi un terme faisant intervenir les réalisations Xn. Repars de la densité de la gaussienne :

et déroule le calcul pour voir où tu bloques.

Damien


http://www.hostingpics.net/viewer.php?id=162242IMG20140205225216.jpg

Je ne sais pas si on voit bien , sinon faut me le dire . Mais je suis bloqué à cette étape .

alpha1234
Membre Naturel
Messages: 15
Enregistré le: 21 Sep 2013, 16:53

par alpha1234 » 13 Avr 2014, 19:33

Cette page explicite les calculs pour les estimateurs du maximum de vraisemblance d'une loi normale .

Raven a écrit:http://www.hostingpics.net/viewer.php?id=162242IMG20140205225216.jpg

Je ne sais pas si on voit bien , sinon faut me le dire . Mais je suis bloqué à cette étape .

 

Retourner vers ✯✎ Supérieur

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 49 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite