Le destin de Pierre & Marie est entre nos mains =)

Réponses à toutes vos questions après le Bac (Fac, Prépa, etc.)
[G]eiSha
Membre Naturel
Messages: 18
Enregistré le: 25 Avr 2009, 18:00

par [G]eiSha » 03 Nov 2009, 21:43

d'accord, en fait en faisant les calculs on se rend bien compte que ça ne tient pas la route !

Donc on a l'union des P(Ai inter Bi+1)
les evenements étant disjoints cela revient à la somme des i=1 à n-3
Ce qui donne Somme des P(Ai)*P(Bi+1) = Somme des 1/(n-2) *1/(n-3)
Ce qui nous donne au final 2/(n-3)



alavacommejetepousse
Membre Irrationnel
Messages: 1667
Enregistré le: 28 Fév 2008, 16:23

par alavacommejetepousse » 04 Nov 2009, 06:59

encore une petite erreur c est toujours la somme des 1/(n-2)^2 car
P(B(i+1) )= 1/(n-2)

[G]eiSha
Membre Naturel
Messages: 18
Enregistré le: 25 Avr 2009, 18:00

par [G]eiSha » 04 Nov 2009, 07:30

Bah il ne peut pas arriver le premier jour !

alavacommejetepousse
Membre Irrationnel
Messages: 1667
Enregistré le: 28 Fév 2008, 16:23

par alavacommejetepousse » 04 Nov 2009, 07:40

ce n est pas la question
ds le cas où pierre arrive le premier il peut le faire de i = 1 à n-3

P(A(i))= 1/(n-2)
et P(B(i+1)) = 1/(n-2) également et non 1/(n-3)

[G]eiSha
Membre Naturel
Messages: 18
Enregistré le: 25 Avr 2009, 18:00

par [G]eiSha » 04 Nov 2009, 16:28

D'accord ...

Donc si je veux calculer La probabilité que nos deux amis se rencontrent
J'ai la probabilité qu'ils arrivent le meme jour + la proba qu'ils arrivent avec un jour d'ecart + la proba qu'ils arrivent avec deux jour d'ecart ??

alavacommejetepousse
Membre Irrationnel
Messages: 1667
Enregistré le: 28 Fév 2008, 16:23

par alavacommejetepousse » 04 Nov 2009, 16:53

ben oui c est ca

yos
Membre Transcendant
Messages: 4858
Enregistré le: 10 Nov 2005, 20:20

par yos » 04 Nov 2009, 17:06

On peut compter tous les couples possibles (a,b), où a est le jour d'arrivée de A et b le jour d'arrivée de B. Il y en a (n-2)².
Ensuite on compte les couples favorables. Pour le premier événement, ce sont les couples (1,1), (2,2),..., (n-2,n-2).
pour le second événement, il s'agit des couples (1,2), (2,3), ... , (n-3,n-2) et leurs symétriques, ce qui en fait 2n-6.
Pour les probabilités que tu cherches, tu fais les quotients

nombre de cas favorables
nombre de cas possibles

[G]eiSha
Membre Naturel
Messages: 18
Enregistré le: 25 Avr 2009, 18:00

par [G]eiSha » 04 Nov 2009, 17:09

Merci alavacommejetepousse :)

Les probas me paraissent toujours aussi affreuses mais je vais m'entrainer ...

alavacommejetepousse
Membre Irrationnel
Messages: 1667
Enregistré le: 28 Fév 2008, 16:23

par alavacommejetepousse » 04 Nov 2009, 17:15

cent fois sur le metier ....

[G]eiSha
Membre Naturel
Messages: 18
Enregistré le: 25 Avr 2009, 18:00

par [G]eiSha » 05 Nov 2009, 17:44

alavacommejetepousse a écrit:cent fois sur le metier ....


???
Rien compris ...

Black Jack

par Black Jack » 05 Nov 2009, 17:49

alavacommejetepousse a écrit:cent fois sur le metier ....




Cela est devenu 100 avec l'inflation. :we:

La citation originale (de Boileau) est : "Vingt fois sur le métier... "

http://fr.wikipedia.org/wiki/Nicolas_Boileau

:zen:

alavacommejetepousse
Membre Irrationnel
Messages: 1667
Enregistré le: 28 Fév 2008, 16:23

par alavacommejetepousse » 05 Nov 2009, 17:51

ben vi j ai tjrs cru que c était 100 mea culpa

 

Retourner vers ✯✎ Supérieur

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 58 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite