Des boules dans une urne
Réponses à toutes vos questions après le Bac (Fac, Prépa, etc.)
-
armadadu95
- Messages: 2
- Enregistré le: 05 Nov 2010, 22:11
-
par armadadu95 » 05 Nov 2010, 22:18
Bonsoir tous le monde,
Voilà j'ai un petit DM de math et je bloque sur cet exercice :
énoncé : dans une urne contenant initialement 3 boules blanches et 4 boules noires, on tire successivement et sans remise les boules, une à une. On décrit le nombre de tirages nécessaire pour obtenir toutes les boules noires à l'aide d'une variable aléatoire X.
--> Donner la loi de X.
Je vous remercie d'avance pour toute aide que vous pouvez m'apporter et je vous souhaite un bon week-end.
Merci
-
le_fabien
- Membre Complexe
- Messages: 2737
- Enregistré le: 05 Oct 2007, 10:00
-
par le_fabien » 06 Nov 2010, 07:58
Bonjour ,
X est la variable aléatoire donnant le nombre de tirages nécessaire pour obtenir toute les noires.
Ainsi X = 4 , 5 , 6 ou 7 car il y 4 noires et en tout 7 boules.
Une idée pour le reste ? :zen:
-
armadadu95
- Messages: 2
- Enregistré le: 05 Nov 2010, 22:11
-
par armadadu95 » 06 Nov 2010, 12:34
Merci le_fabien
P(X=4)=(4/4)/(7/4)=1/35
P(X=5)=(4/4)(4/1)/(7/4)=4/35
P(X=6)=(4/4)(2/4)/(7/4)=6/35
P(X=7)=(4/4)(3/3)/(7/4)=1/35
Or, normalement P(X=4)+P(X=5)+P(X=6)+P(X=7) =1 et là non :doh: ... quelqu'un peut m'aider ?
D'après l'énoncé, je pense qu'il s'agit d'une variable aléatoire géométrique, car on répète une expérience "succès/échec" jusqu'à avoir un succès.
(Succès : tirer 4 boules noires)
Donc X suit une loi géométrique de paramètre p :
P(X=k) = p.(1-p)^(k-1)
Comment on trouve p ensuite ?
Merci d'avance pour votre aide.
-
le_fabien
- Membre Complexe
- Messages: 2737
- Enregistré le: 05 Oct 2007, 10:00
-
par le_fabien » 06 Nov 2010, 12:43
Je pense pas que ce soit une loi géo.
Pour P(X=4) = (4*3*2*1)/(7*6*5*4) et P(X=5 ) = 4 * (4*3*2) * 3 /(7*6*5*4)
:zen:
Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 54 invités