Courbe paramétrée et points doubles.

Réponses à toutes vos questions après le Bac (Fac, Prépa, etc.)
Hipollene
Membre Naturel
Messages: 38
Enregistré le: 06 Nov 2007, 18:23

Courbe paramétrée et points doubles.

par Hipollene » 09 Déc 2007, 11:39

Bonjour !

Me voilà dans un exercice plutôt simple... mais dans lequel je me mélange les pinceaux !!! Pouriez-vous m'aider à comprendre s'il vous plait ?

Voici le problème :
Je veux montrer que pour t1 différent de t0, M(t1) = M(t0)
avec M(t0) = x(t0),y(t0) et M(t1) = x(t1),y(t1)
x(t0) = 3(t0)^3 + 2(t0)² - (t0) - 1
y(t0) = 3(t0)² + 2(t0) + 1
et
x(t1) = 3(t1)^3 + 2(t1)² -(t1) - 1
y(t1) = 3(t1)² + 2(t0) +1

Comment mener le calcul ???
Merci d'avance !



gol_di_grosso
Membre Irrationnel
Messages: 1402
Enregistré le: 22 Sep 2007, 11:28

par gol_di_grosso » 09 Déc 2007, 11:43

ça marche pas (si ?)
t0=0 et t1=1
x(0)=-1
x(1)=3
:hein:

busard_des_roseaux
Membre Complexe
Messages: 3151
Enregistré le: 24 Sep 2007, 13:50

par busard_des_roseaux » 09 Déc 2007, 16:32

bjr,
on égalise les couples de coordonnées, on fait tout passer à gauche,
on factorise par t1-t0 avc:

 

Retourner vers ✯✎ Supérieur

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 43 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite