9 résultats trouvés
Revenir à la recherche avancée
Bonjour, pour trouver les coordonnées (x,y) de S dans cette base il faut que tu trouves x et y tels que : S=A+x \vec{AE}+y \vec{AC} Par exemple en utilisant la relation de Chasles et la "définition" d'un vecteur AM~M-A (en coordonnées). Merci, mais je me doutais qu'il fallait utiliser cet...
- par Reduel
- 26 Fév 2012, 14:52
-
- Forum: ✎✎ Lycée
- Sujet: Coordonnées d'un point selon des vecteurs
- Réponses: 3
- Vues: 758
Bonjour,
j'aimerais un petit peu d'aide s'il vous plait.
On a un triangle ACE.
et le point S est placé tel que:
vecteur SC= vecteur (-3)SE.
Si l'on se place dans le repère (A; vecteur AE; vecteur AC), quelles sont les coordonnées de S ??
Merci d'avance
- par Reduel
- 26 Fév 2012, 14:24
-
- Forum: ✎✎ Lycée
- Sujet: Coordonnées d'un point selon des vecteurs
- Réponses: 3
- Vues: 758
Attention pour tes intervalles à revoir car delta=16m :) 4$\begin{array}{l} \Delta = {\left( { - 4m} \right)^2} - 4\left( m \right)\left( {4m - 4} \right)\\ \Delta = 16{m^2} - 16{m^2} + 16m\\ \Delta = 16m\\ {a_1} = \frac{{4m - 4\sqrt m }}{{2m}} = \frac{{4m}}{{2m}} - \frac{{4...
- par Reduel
- 30 Déc 2011, 11:51
-
- Forum: ✎✎ Lycée
- Sujet: Résolu :)
- Réponses: 12
- Vues: 800
maths0 a écrit:Tu as déjà vu la résolution d'un trinôme de la forme f(x)=ax²+bx+c ?
Alors, si je n'ai pas été mauvais:

Delta: 16m²-16m²+16m=16m
Donc si m0, alors a a deux solutions.
a1= (4m-4rac(m)) / 2m
a2= (4m+4rac(m=)) / 2m
Cest ca ?
- par Reduel
- 30 Déc 2011, 11:48
-
- Forum: ✎✎ Lycée
- Sujet: Résolu :)
- Réponses: 12
- Vues: 800
Oui.
Attend oui j'ai vu je crois.
Je te dis me résultats dans 5min ;)
- par Reduel
- 30 Déc 2011, 11:24
-
- Forum: ✎✎ Lycée
- Sujet: Résolu :)
- Réponses: 12
- Vues: 800
Je suis arrivé également au meme résultat que toi. Mais après je ne comprend pas comment trouver a=... :hum:
- par Reduel
- 30 Déc 2011, 11:20
-
- Forum: ✎✎ Lycée
- Sujet: Résolu :)
- Réponses: 12
- Vues: 800
Mais moi il faut que je trouve a et non m. :help:
- par Reduel
- 30 Déc 2011, 11:03
-
- Forum: ✎✎ Lycée
- Sujet: Résolu :)
- Réponses: 12
- Vues: 800
Es-tu sur que (a-2)²m= ma²-4a+4?
Ca ne serait pas plutot : ma²-4am+4m ?
- par Reduel
- 30 Déc 2011, 10:57
-
- Forum: ✎✎ Lycée
- Sujet: Résolu :)
- Réponses: 12
- Vues: 800
Bonjour, pour la rentrée j'ai un petit exercice à faire mais je bloque à une question. Il faudra résoudre : f'(a)=m Or f'(a)= 4/(a-2)². Donc on aurait à résoudre l'équation 4(a-2)²=m Moi je trouve a=-(m²-4m+(4m/a)-(4/a). Mais cela me parait assez complexe comme solution. Pouvez vous m'aider ? :)
- par Reduel
- 30 Déc 2011, 10:21
-
- Forum: ✎✎ Lycée
- Sujet: Résolu :)
- Réponses: 12
- Vues: 800