10 résultats trouvés

Revenir à la recherche avancée


Ok
Merci beaucoup pour votre aide. :id:
par essmleportel7
07 Nov 2011, 20:31
 
Forum: ✯✎ Supérieur
Sujet: Récurrence sur la sommes des k^4
Réponses: 7
Vues: 1031

Ok
Même si c'est une récurrence je peux montrer A=C et B=C ?
Je pensais que ça faisais un peu trop "méthode terminal" et que j'oubliai seulement quelque chose pour avancer.
par essmleportel7
07 Nov 2011, 20:26
 
Forum: ✯✎ Supérieur
Sujet: Récurrence sur la sommes des k^4
Réponses: 7
Vues: 1031

Je ne vois pas non :hum:
par essmleportel7
07 Nov 2011, 20:10
 
Forum: ✯✎ Supérieur
Sujet: Récurrence sur la sommes des k^4
Réponses: 7
Vues: 1031

Non isocèle en A.

Je sais que l'argument de BC sur BA c'est l'angle (BA;BC) ( en vecteur) mais avec le module je ne comprend pas la question ?
par essmleportel7
07 Nov 2011, 19:34
 
Forum: ✎✎ Lycée
Sujet: Complexe
Réponses: 2
Vues: 358

Récurrence sur la sommes des k^4

Bonjour je doit démontrer cette formule par récurrence: Quelque soit n ;) 1, La somme allant de k=1 à n des k^4 = (1/30)*n*(2n+1)*(n+1)(3n+3n²-1) Je passe toute la première parti de la récurrence car c'est sur la dernière partie que je bloque: La somme allant de k=1 à n-1 des k^4 = La somme allant d...
par essmleportel7
07 Nov 2011, 16:22
 
Forum: ✯✎ Supérieur
Sujet: Récurrence sur la sommes des k^4
Réponses: 7
Vues: 1031

Complexe

Bonjour,

J'aimerai savoir ce que représente géométriquement le module du vecteur BC sur le module du vecteur BA ?

Merci
par essmleportel7
07 Nov 2011, 16:02
 
Forum: ✎✎ Lycée
Sujet: Complexe
Réponses: 2
Vues: 358

J'aurai du prendre un autre barycentre que G,

-MA+2MB+2MC = (.1 + 2 + 2) MH = 3 MH
MA+MB+MC = ( 1+1 +1 ) MG = 3MG


Et ca ferai alors la mediatrice du segmenet HG ?
par essmleportel7
25 Oct 2011, 22:21
 
Forum: ✎✎ Lycée
Sujet: Barycentre.
Réponses: 7
Vues: 790

Ok, c'est ce que j'avais essayé de faire mais avec seulement deux points et non trois.

Donc j'en arrive à (toujours en vecteur) 3 MG = 3 MG
Ce qui est "rassurant" :zen:

L'ensemble des points serai le centre de gravité du triangle ?
par essmleportel7
25 Oct 2011, 21:50
 
Forum: ✎✎ Lycée
Sujet: Barycentre.
Réponses: 7
Vues: 790

Bonne question :hein:

C'est ce que j'ai essayé de faire à la base, mais je m'en sort jamais.

Si vous pouviez simplement me donner l'idée pour avancer.
Par exemple Chasles en introduisant le point A

[Merci de votre réponse!]
par essmleportel7
25 Oct 2011, 21:43
 
Forum: ✎✎ Lycée
Sujet: Barycentre.
Réponses: 7
Vues: 790

Barycentre.

Bonjour, mon professeur nous a donné un DM afin de préparer les leçons suivantes, cependant je ne me souvient plus de la méthode pour résoudre se problème: ABC et un triangle I est le milieu de BC D = bar {(A;-1)(B;2)(C;2)} Dans ce qui suit ce sont des vecteurs. Dans les questions précédentes j'ai p...
par essmleportel7
25 Oct 2011, 18:15
 
Forum: ✎✎ Lycée
Sujet: Barycentre.
Réponses: 7
Vues: 790

Revenir à la recherche avancée

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite