20 résultats trouvés
Revenir à la recherche avancée
Voici le théorème que j'ai utilisé : (cependant dans notre leçon il ne possède pas de nom) Si (Un), (Vn), (Wn) sont trois suites réelles telles que (Un) et (Wn) convergent de même limite l et si à partir d'un certain rang Un<Vn<Wn, alors (Vn) est convergente de limite l. A présent, je me lance dans ...
- par Trevor
- 05 Nov 2008, 19:17
-
- Forum: ✯✎ Supérieur
- Sujet: MPSI - Suites bornées et convergentes
- Réponses: 15
- Vues: 2378
Je crois que je suis toujours largué. Eh bien on sait que inf(Ap) est une suite croissante et convergente vers L, tout comme sup(Ap) est une suite décroissante et convergente vers L. A ce moment-là, peut-on dire que comme lim(inf Ap) = lim(sup Ap) = L, alors, comme la suite (Un) est bornée de bornes...
- par Trevor
- 05 Nov 2008, 18:36
-
- Forum: ✯✎ Supérieur
- Sujet: MPSI - Suites bornées et convergentes
- Réponses: 15
- Vues: 2378
Je suis désolé, je ne vois pas où tu veux en venir.
De plus, je ne comprends pas pourquoi L = inf(Ap) ; si L = li = ls, alors ne devrait-on pas avoir :
L = lim(Vp) = lim (Wp)
donc L = lim (inf Ap) = lim (sup Ap), c'est-à-dire L = lim (inf Ap) et non L = inf(Ap) ?
- par Trevor
- 05 Nov 2008, 17:57
-
- Forum: ✯✎ Supérieur
- Sujet: MPSI - Suites bornées et convergentes
- Réponses: 15
- Vues: 2378
Donc en reprenant ton raisonnement : Soit A un majorant de (Un). Pour tout entier, (Un) ;) A, d'où inf{Un|p;)n} ;) A, d'où inf(Ap) ;) A, d'où Vp ;) A, d'où Vp majorée par A, et on en déduit que Vp est convergente. Et on applique le même raisonnement pour Wp, je me trompe ? Est-ce cela ? Ensuite, pou...
- par Trevor
- 05 Nov 2008, 16:12
-
- Forum: ✯✎ Supérieur
- Sujet: MPSI - Suites bornées et convergentes
- Réponses: 15
- Vues: 2378
Ca y est, je pense avoir compris (il était temps !). On a donc : A_p+1 est inclus dans A_p, d'où : inf A_p ;) inf A_p+1 ;) sup A_p+1 ;) sup A_p V_p ;) V_p+1 ;) W_p+1 ;) W_p V_p ;) V_p+1 => (V_p) croissante. W_p+1 ;) W_p => (W_p) décroissante. Ensuite, pour la question suivante, si on sait que (V_p) ...
- par Trevor
- 05 Nov 2008, 12:43
-
- Forum: ✯✎ Supérieur
- Sujet: MPSI - Suites bornées et convergentes
- Réponses: 15
- Vues: 2378
Bonjour, Dans la première question je me rends bien compte qu'il faut avoir si Vp ou Wp sont croissantes ou décroissantes, mais je ne vois pas comment en fait. Et pour la question 2, je sais que le théorème dit que si (Un) (par exemple) est une suite réelle croissante et majorée, alors (Un) est con...
- par Trevor
- 05 Nov 2008, 10:52
-
- Forum: ✯✎ Supérieur
- Sujet: MPSI - Suites bornées et convergentes
- Réponses: 15
- Vues: 2378
Bonjour, Je suis en première année de MPSI et notre prof de maths nous a donné une feuille dexercices à faire. Cependant, il y a un exercice que je ne parviens pas à résoudre, et qui est le suivant : Partie I : Soit (Un), n appartenant à N, une suite bornée de réels. Posons, pour p appartenant à N...
- par Trevor
- 04 Nov 2008, 20:46
-
- Forum: ✯✎ Supérieur
- Sujet: MPSI - Suites bornées et convergentes
- Réponses: 15
- Vues: 2378
3) Si k = 0 cela ne peut pas fonctionner, car on se retrouverait avec -1, et on sait que A inclus dans E inclus dans N (entiers naturels). Donc il n'existe pas d'application f3. C'est ça ? (ou bien suis-je encore à côté de la plaque ? :briques: )
- par Trevor
- 10 Sep 2008, 18:05
-
- Forum: ✯✎ Supérieur
- Sujet: Ensembles et Applications
- Réponses: 8
- Vues: 967
Grâce à toi, je crois que ça commence à s'éclaircir, dans cette zone brumeuse et sombre qu'est mon esprit ! Merci ! Donc, j'essaye : 1) Ben s'il n'y a pas d'éléments dans f, alors il ne doit pas pouvoir y en avoir dans f*(A). Et de ça, que peut-on en déduire ? Qu'il n'existe pas de f1 ? Et si tel es...
- par Trevor
- 10 Sep 2008, 17:16
-
- Forum: ✯✎ Supérieur
- Sujet: Ensembles et Applications
- Réponses: 8
- Vues: 967
Tout d'abord, merci d'avoir répondu ! Ce qui me bloque, c'est que dans la question, je n'arrive pas à visualiser où se trouve une application, en fait je ne comprends pas comment trouver une application dans ce qui est donné, particulièrement dans la question 1. Pour la question 2, par exemple, est-...
- par Trevor
- 10 Sep 2008, 16:44
-
- Forum: ✯✎ Supérieur
- Sujet: Ensembles et Applications
- Réponses: 8
- Vues: 967
Bonjour, je suis en Prépa MPSI et j'ai un exercice de mathématiques que je n'arrive pas à faire. Pourriez-vous m'aider s'il vous plaît ? Merci d'avance. Voici l'énoncé de l'exercice : Soit une application f : E -> F (E et F deux ensembles), on sait que f induit l'application f*, telle que f* : P(E) ...
- par Trevor
- 10 Sep 2008, 16:16
-
- Forum: ✯✎ Supérieur
- Sujet: Ensembles et Applications
- Réponses: 8
- Vues: 967
Ah oui je les avait oubliés les négatifs (et dire que je fais Spé. Maths... :doh: ) Donc, en tenant compte des diviseurs négatifs, on peut aussi avoir k = -9, -4, -1 et 0. C'est bien cela ? Et pour l'exercice 2 (je sais, je suis tétû, mais bon, j'aimerais mieux comprendre, plutôt que de faire ça san...
- par Trevor
- 19 Sep 2007, 16:40
-
- Forum: ✎✎ Lycée
- Sujet: [Terminale S - Spécialité : Maths] DM sur la divisibilité et
- Réponses: 8
- Vues: 3292
Ca y est j'ai compris (je sais, je suis long à la détente... ^^' ). C'est vrai que c'est facile ! Mais je préfère mettre ce que je trouve pour être sûr que ce soit bien ça (on sait jamais). On a : (k + 9)/(k - 1) = 1 + (10)/(k - 1) Donc on cherche à savoir pour quelles valeurs de k on a 1 + (10)/(k ...
- par Trevor
- 19 Sep 2007, 16:28
-
- Forum: ✎✎ Lycée
- Sujet: [Terminale S - Spécialité : Maths] DM sur la divisibilité et
- Réponses: 8
- Vues: 3292
D'abord, merci beaucoup pour votre aide ! :we: Ensuite, pour la piste que vous m'avez fournie pour l'exercice 1, j'arrive à cela : k + 9 = k - 1 + 10 Donc : k + 9 = (k - 1) x 1 + (k - 1) x (10)/(k - 1) (k + p)/(k - 1) = 1 + (10)/(k -1) Et là, je n'y arrive plus, je bloque, donc je me demande si je s...
- par Trevor
- 19 Sep 2007, 16:01
-
- Forum: ✎✎ Lycée
- Sujet: [Terminale S - Spécialité : Maths] DM sur la divisibilité et
- Réponses: 8
- Vues: 3292
Bonjour, notre prof de spé. nous a donné un devoir maison à faire pour vendredi à propos de la divisibilité et de la division euclidienne, et il y a deux exercices que je n'arrive pas à faire, est-ce que quelqu'un pourrait m'aider s'il-vous-plaît ? Exercice 1 : Pour quelles valeurs de l'entier k le ...
- par Trevor
- 19 Sep 2007, 14:51
-
- Forum: ✎✎ Lycée
- Sujet: [Terminale S - Spécialité : Maths] DM sur la divisibilité et
- Réponses: 8
- Vues: 3292
Je ne pense pas que julie33 ait fait cet exercice en 2 minutes, sinon elle le mettrait pas sur le forum, mais je pense plutôt qu'elle réclame de l'aide. Personnellement, je ne suis qu'en seconde, et je suis désolé, mais je ne peux pas t'aider, j'arrive à faire la question 1, mais pour le tableau, je...
- par Trevor
- 20 Sep 2006, 14:21
-
- Forum: ✎✎ Lycée
- Sujet: exo pour 2min
- Réponses: 11
- Vues: 1003
Merci de ton aide René38 ! :happy2:
C'est vrai que de cette manière c'est beaucoup plus rapide que de d'abord démontrer que la fonction est décroissante sur [-2 ; +infini[.
Encore Merci ! :we:
Amicalement,
Trevor
- par Trevor
- 16 Sep 2006, 09:53
-
- Forum: ✎✎ Lycée
- Sujet: Encadrement de fonctions (Pour vérification)
- Réponses: 3
- Vues: 1395
bonjour à tous, j'ai besoin d'aide je bloque :-s rappel : ^ = puissance / = diviser par ou sur "x" developper : A = (15-6pi^3)^2 B = (1+pi)(1-pi+pi^2-pi^3+pi^4-pi^5+pi^6) simplifier : F = pi^2-1/pi+1 merci d'avance bonne soirée ;-) Eh bien, c'est simple à simplifier, il suffit d'appplique...
- par Trevor
- 15 Sep 2006, 18:27
-
- Forum: ✎✎ Lycée
- Sujet: exercice que je n'arrive pas à resoudre ...
- Réponses: 9
- Vues: 1054
Bonjour, j'aimerais que quelqu'un puisse vérifier si ce que j'ai fait pour cet exercice est bon, et si c'est faux, qu'il puisse m'expliquer où. Donc, voilà mon exercice : "On a tracé ci-dessous la courbe H représentative de la fonction f définie sur [-2 ; +infini[ par : f(x) = 9 / (2x + 5) En u...
- par Trevor
- 15 Sep 2006, 17:59
-
- Forum: ✎✎ Lycée
- Sujet: Encadrement de fonctions (Pour vérification)
- Réponses: 3
- Vues: 1395