11 résultats trouvés

Revenir à la recherche avancée


Bahvqur l'axe de symétrie de ta courbe coupe la courbe en son sommet donc x=1 ,
par Nhalijnah
10 Oct 2010, 21:15
 
Forum: ✎✎ Lycée
Sujet: Axe de symétrie d'une courbe
Réponses: 26
Vues: 2149

Hihi , j'ai pi t'aider c'est bon ?
par Nhalijnah
10 Oct 2010, 21:09
 
Forum: ✎✎ Lycée
Sujet: Axe de symétrie d'une courbe
Réponses: 26
Vues: 2149

Tu ne l'as pas vu ? 2x^2 - 4x + 5.25. 2(x^2 - 2x + 2.625). 2(x^2 - 2*1*x + 2.625). Donc = 2 (x^2 - 2*1*x +1^2 + 2.625 - 1^2). (Identités remarquables). Cela donne = 2((x-1)^2 + 1.625). Tu lis donc x-1=0 d'où x=1 ce qui te donne l'abscisse de ton sommet , rt l'ordonnee qui est 2*1.625. Désole de la l...
par Nhalijnah
10 Oct 2010, 21:03
 
Forum: ✎✎ Lycée
Sujet: Axe de symétrie d'une courbe
Réponses: 26
Vues: 2149

Pas d'intersections pardon
par Nhalijnah
10 Oct 2010, 20:55
 
Forum: ✎✎ Lycée
Sujet: Axe de symétrie d'une courbe
Réponses: 26
Vues: 2149

Donc tu as deux intersections avec l'axe des abscisses , donc ta formule est inutilisable . Je reste sur la position de la forme canonique
par Nhalijnah
10 Oct 2010, 20:54
 
Forum: ✎✎ Lycée
Sujet: Axe de symétrie d'une courbe
Réponses: 26
Vues: 2149

Je trouve : A=2. B= -4. C=5.25. D=. (-4)^2 - 4 * 2 * 5.25 = -26
par Nhalijnah
10 Oct 2010, 20:48
 
Forum: ✎✎ Lycée
Sujet: Axe de symétrie d'une courbe
Réponses: 26
Vues: 2149

Oui , pour vérification fait attention d'avoir un discriminant = 0. B^2 - 4ac
par Nhalijnah
10 Oct 2010, 20:41
 
Forum: ✎✎ Lycée
Sujet: Axe de symétrie d'une courbe
Réponses: 26
Vues: 2149

Simplement faire ?
par Nhalijnah
10 Oct 2010, 20:37
 
Forum: ✎✎ Lycée
Sujet: Axe de symétrie d'une courbe
Réponses: 26
Vues: 2149

Perso j'utiliserai la forme canonique , afin de trouver le sommet et en déduire cet axe de symétrie . Tu vois de quoi je parle ?
par Nhalijnah
10 Oct 2010, 20:32
 
Forum: ✎✎ Lycée
Sujet: Axe de symétrie d'une courbe
Réponses: 26
Vues: 2149

Personne ?
J'ai vraiment de la peine avec cette question qui est peut-être évidente =)

Merci d'avance ;) :mur:
par Nhalijnah
10 Oct 2010, 19:22
 
Forum: ✎✎ Lycée
Sujet: 1ere S : Barycentre et signes de coefficients .
Réponses: 1
Vues: 787

1ere S : Barycentre et signes de coefficients .

Bonjour ! Etudiant de 1 ère S , j'ai un DM de maths pour demain , et je bute sur une question (finale) .. Le chapitre est le barycentre de points pondérés .. Données : k est un reel tel que Vecteur AG = k * Vecteur AB , avec k compris entre 0 et 1 .. La question : Vérifiez que G barycentre de (A;a) ...
par Nhalijnah
10 Oct 2010, 18:11
 
Forum: ✎✎ Lycée
Sujet: 1ere S : Barycentre et signes de coefficients .
Réponses: 1
Vues: 787

Revenir à la recherche avancée

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite