16 résultats trouvés
Revenir à la recherche avancée
Oui en effet, la démarche paraît juste mais ce n'est pas ce que je devrais trouver. Ah ! après vérification l'équation devrait être 100 = 10 log ( x / 10^(-12) ) J'ai vraiment du mal aujourd'hui, je suis désolée ! Et je vous remercie beaucoup de vos réponses. J'essaye en reprenant votre démarche x /...
- par Badmonster
- 24 Avr 2012, 16:21
-
- Forum: ✎✎ Lycée
- Sujet: Logarithme
- Réponses: 4
- Vues: 549
Bonjour, Votre équation n'est pas très claire, s'agit-il de logarithmes décimaux ou népériens ? Mon équation s'est décalée, mais il s'agit bien du logarithme décimal. La touche " log " de la calculatrice. Je remets au propre : 100 = log ( x / 10^(-12) ) Voila, cela devrait être plus clair !
- par Badmonster
- 24 Avr 2012, 14:33
-
- Forum: ✎✎ Lycée
- Sujet: Logarithme
- Réponses: 4
- Vues: 549
Bonjour à tous. Je ne suis plus en Terminale, mais ma question, sur le logarithme est de ce niveau là, donc je poste ici. J'ai fait une terminale S, et, mémoire sélective aidant, ai complètement oublié comment manipuler des expression avec un logarithme. Je vous donne un exemple : x 100 = 10 log ( _...
- par Badmonster
- 24 Avr 2012, 14:00
-
- Forum: ✎✎ Lycée
- Sujet: Logarithme
- Réponses: 4
- Vues: 549
Alors j'ai essayé avec la méthode que tu m'as indiqué :
On obtient donc z= 1 + cos T+ i sin T
avec |z|=2.
Soit cos T= (1 + cos T ) /2
2 cos T = 1+ cos T
cos T = 1
Et sin T = (sin T)/2
soit sin T = 0
Ce qui ferait un argument de ... 0 ?
- par Badmonster
- 20 Déc 2010, 10:42
-
- Forum: ✎✎ Lycée
- Sujet: ALGÈBRE : nombres complexes
- Réponses: 5
- Vues: 12351
Bonjour ! Je bloque sur un exercice de math ! :mur: Je m'excuse d'avance, je ne sais pas utiliser les balises pour écrire de jolies formules ! Bref, voila l'exercice : On considère le nombre complexe z = 1+ e^(i thêta ) La première question est très facile, il suffit de vérifier que z= e^(i thêta/2)...
- par Badmonster
- 20 Déc 2010, 10:30
-
- Forum: ✎✎ Lycée
- Sujet: ALGÈBRE : nombres complexes
- Réponses: 5
- Vues: 12351
D'accord. Je comprend. En effet mon bidouillage était incohérent. Mais une fois que j'ai cette équation, je calcule le discriminant. Qui me donnerait alors Delta = (1+e)^2 -4 e^(-2) . e^3 soit 1+2e+e^2 -4e^(-2+3) 1-2e + e^2 Ce qui donnerait donc x1 = [ -1 -e + racine carrée de (1-2e +e^2 ) ] / 2.e^(...
- par Badmonster
- 31 Oct 2010, 15:50
-
- Forum: ✎✎ Lycée
- Sujet: [Term S] Fonction dérivée.
- Réponses: 3
- Vues: 679
Bonjour à tous. Je dois résoudre l'équation suivante. e^(2x-2) _ (1+e).e^(x) + e^3 = 0 L'ensemble de définition étant l'ensemble des réels R. Comment faire ? Je me retrouve assez rapidement bloqué, et si j'obtiens un résultat, je doute de sa justese :mur: Je fais : e^(2x-2) + e^3 = (1+e).e^x j'obtie...
- par Badmonster
- 31 Oct 2010, 15:22
-
- Forum: ✎✎ Lycée
- Sujet: [Term S] Fonction dérivée.
- Réponses: 3
- Vues: 679
Oui oui, je prend bien en compte les intervalles, là c'était juste pour voir. et effectivement, je n'aurais pas du choisir x comme lettre pour la formule de la dérivée de la racine carrée. Sinon ça y'est, après moults essais, j'arrive à trouver une dérivée dont le signe correspond aux variations de ...
- par Badmonster
- 09 Oct 2010, 15:06
-
- Forum: ✎✎ Lycée
- Sujet: Calcul de dérivée
- Réponses: 11
- Vues: 1747
Oui je comprend.
f'(x) = u'v + uv'
Or dans ce cas v' s'obtient avec la formule (racine carrée de x)' = x' / 2 racine de x
- par Badmonster
- 09 Oct 2010, 14:55
-
- Forum: ✎✎ Lycée
- Sujet: Calcul de dérivée
- Réponses: 11
- Vues: 1747
Oui je l'ai fait, je trouve ( je vais écrir à moitié en français, j'ai du mal avec le code ). Soit u'(x) = (Racine carrée de x(2-x) ) = (x+2) / 2* racine carrée de (x(2-x)) En utilisant l'expression conjuguée e peux simplifier et j'arrive à une expression = - 2 * racine carrée de x(x-2) / 4x et quan...
- par Badmonster
- 09 Oct 2010, 14:20
-
- Forum: ✎✎ Lycée
- Sujet: Calcul de dérivée
- Réponses: 11
- Vues: 1747
Non, je suis perdue dans toutes ces lettres :triste:
Il faut bien que je change la variable, pour calculer la dérivée de la racine carrée
- par Badmonster
- 09 Oct 2010, 14:03
-
- Forum: ✎✎ Lycée
- Sujet: Calcul de dérivée
- Réponses: 11
- Vues: 1747
Bonjour !
Comment puis je calculer la dérivée de
f(x) = x. RACINE CARREE DE ( x(2-x) )
Je sais bien que je dois faire un changement de variable, mais je n'arrive pas à calculer la dérivée.
Merci
- par Badmonster
- 09 Oct 2010, 13:24
-
- Forum: ✎✎ Lycée
- Sujet: Calcul de dérivée
- Réponses: 11
- Vues: 1747
D'accord, je vais essayer comme ça ! Mais qu'est ce que tu appelles quantité conjugée ? Je connais l'expression conjugée mais c'est pour les quotients , non ?
- par Badmonster
- 09 Oct 2010, 09:56
-
- Forum: ✎✎ Lycée
- Sujet: [TS] limites de fonctions
- Réponses: 6
- Vues: 602
Bonjour. J'ai des exercices de math à faire, et je suis bloquée sur le calcul de 2 limites. La 1ère est la limite en -l'infini de f(x) = sqrt{x^2 _ 2x)} -sqrt{x^2 _ 1 }. J'obtiens une forme indéterminée. Je ne peux pas appliquer la règle du monôme du plus haut degré vu que ce n'est pas une fonct...
- par Badmonster
- 09 Oct 2010, 09:11
-
- Forum: ✎✎ Lycée
- Sujet: [TS] limites de fonctions
- Réponses: 6
- Vues: 602