8 résultats trouvés
Revenir à la recherche avancée
Bonjour ! J'ai un nouveau problème à vous soumettre : Soit un plan ax+by+cz+d=0 dans l'espace. Je sais que ce plan coupe un pavé dont je connais les coordonnées (x,y,z) de chacun de ses sommets. Y a-t-il un moyen pour que je puisse trouver les coordonnées des points des sommets du parallélogramme fo...
- par Zayaan
- 05 Avr 2009, 19:08
-
- Forum: ✎✎ Lycée
- Sujet: Coordonnées de l'intersection entre un plan et un pavé
- Réponses: 1
- Vues: 874
Pour ton post scriptum, justement, le plan choisi n'est pas arbitraire, et bien défini (une propriété intrinsèque à la molécule), voilà pourquoi je désire travailler sur ce plan uniquement ;) Mais en effet, il aurait suffi d'appliquer l'inverse des transformations pour retourner sur le plan initial,...
- par Zayaan
- 01 Avr 2009, 19:21
-
- Forum: ✯✎ Supérieur
- Sujet: [Résolu] Représenter un plan dans l'espace
- Réponses: 10
- Vues: 2062
Trouvé ! Les projections étant perpendiculaires au plan initial, normal que la projection du plan z=0 vers le plan ax+by+cz+d=0 ne retombe pas sur les projections initiales de ma molécule :) Dernière question et j'aurai fini : J'ai mes coordonnées des 4 coins du rectangle d'une part, et les coordonn...
- par Zayaan
- 01 Avr 2009, 17:11
-
- Forum: ✯✎ Supérieur
- Sujet: [Résolu] Représenter un plan dans l'espace
- Réponses: 10
- Vues: 2062
Alors, j'y suis presque :) D'après la méthode expliquée précédemment, j'arrive à avoir un rectangle sur mon plan, de surface apparemment correcte. Seul souci, il n'est pas au bon endroit du plan, ne "recouvre" donc pas les projections des points de la molécule. Disons que j'ai mes projections des po...
- par Zayaan
- 01 Avr 2009, 13:22
-
- Forum: ✯✎ Supérieur
- Sujet: [Résolu] Représenter un plan dans l'espace
- Réponses: 10
- Vues: 2062
Navré si mes explications étaient confuses, il me semble qu'on s'est mal compris : je veux juste réussir à "dessiner" le plan sur lequel je projette ma molécule, donc dessiner un rectangle qui le représente et qui contient toutes les projections. Ainsi, les points ne doivent pas bouger, et le plan n...
- par Zayaan
- 01 Avr 2009, 12:47
-
- Forum: ✯✎ Supérieur
- Sujet: [Résolu] Représenter un plan dans l'espace
- Réponses: 10
- Vues: 2062
Cette dernière solution me semble plus simple, effectivement. Si j'ai bien compris, je projette mes points sur le plan z=0, je trouve les coordonnées de mon rectangle délimiteur, et je le reprojette sur mon plan de projection ? Je vais essayer de faire cela :)
- par Zayaan
- 01 Avr 2009, 11:09
-
- Forum: ✯✎ Supérieur
- Sujet: [Résolu] Représenter un plan dans l'espace
- Réponses: 10
- Vues: 2062
Alors, après quelques essais, je ne suis pas sûr d'avoir compris ton indication : en effet, si je détermine que les côtés de mon rectangle (ou parallélogramme, le critère rectangulaire n'est pas si important) doivent être parallèles aux axes de mon espace, je sors alors de mon plan, qui lui n'est pa...
- par Zayaan
- 01 Avr 2009, 10:26
-
- Forum: ✯✎ Supérieur
- Sujet: [Résolu] Représenter un plan dans l'espace
- Réponses: 10
- Vues: 2062
Bonjour ! Travaillant sur un programme de représentation de molécules dans l'espace, me voilà face au problème suivant : J'ai un plan d'équation ax+by+cz+d=0. Je peux donc projeter tous les points de ma molécule sur ce plan. J'aimerais trouver les coordonnées de 4 points correspondant aux 4 sommets ...
- par Zayaan
- 01 Avr 2009, 09:32
-
- Forum: ✯✎ Supérieur
- Sujet: [Résolu] Représenter un plan dans l'espace
- Réponses: 10
- Vues: 2062