14 résultats trouvés
Revenir à la recherche avancée
Je suis retourné à la définition d'une similitude direct, et je me suis dit que dans mon cas les angles orientés sont bien conservé, et comme angle A=angle C , C serai l'image de B par une similitude direct.
- par gemini45
- 12 Mar 2009, 21:06
-
- Forum: ✎✎ Lycée
- Sujet: Similitudes planes
- Réponses: 4
- Vues: 581
L'angle BAC = angle de ACB = pi/4 (45°)
Pour le rapport AC/AB=racine de 2 il me semble
- par gemini45
- 12 Mar 2009, 20:38
-
- Forum: ✎✎ Lycée
- Sujet: Similitudes planes
- Réponses: 4
- Vues: 581
Bonsoir, j'ai un exercice qui me pose problème. C'est juste 2 questions mais j'ai vraiment du mal. Si vous pouviez me guider. Enoncé : Dans le plan orienté, d est une droite fixée, A est un point fixée n'appartenant pas à d et B est un point de D. On construit C tel que ABC soit un triangle rectangl...
- par gemini45
- 12 Mar 2009, 20:11
-
- Forum: ✎✎ Lycée
- Sujet: Similitudes planes
- Réponses: 4
- Vues: 581
Bonjour, j'ai un petit problème pour un exercice sur les suites. En fait c'est la première question, pourtant le reste semble assez simple. Mais sans ça je ne peux continuer. On considère la suite u définie par u(0)=2 et pour tout n de N, u(n+1)= \frac{5 u(n) - 1}{u(n)+3} Vérifier qu...
- par gemini45
- 07 Mar 2009, 13:33
-
- Forum: ✎✎ Lycée
- Sujet: Exercice suites
- Réponses: 2
- Vues: 652
En fait c'est la toute première question montrer que f(x) est diférent de 0, ça j'ai trouvé.
En tout cas merci de ton aide.
Bon week-end
- par gemini45
- 14 Fév 2009, 14:19
-
- Forum: ✎✎ Lycée
- Sujet: Fonctions et dérivés
- Réponses: 5
- Vues: 690
Pour le début c'est bon, j'ai trouver g(0)=0
Pour la 2eme je tombe sur f'(x) = 2 g(x) / g'(x) , et je ne suis pas plus avancé
- par gemini45
- 14 Fév 2009, 14:05
-
- Forum: ✎✎ Lycée
- Sujet: Fonctions et dérivés
- Réponses: 5
- Vues: 690
Bonjour, j'ai 2 questions qui me posent problèmes, je pense avoir bien démarré mais je m'y perd par la suite. On sait que : 1) [f(x)]²-[g(x)]² = 1 2) f(x) = g'(x) 3) f(0)=1 - Calculer g(0) j'ai commencé par : f(x)=g'(x) équivaut à f(0)=g'(0) équivaut à 1=g'(0) après je vois pas, si je primitive g'(0...
- par gemini45
- 14 Fév 2009, 13:27
-
- Forum: ✎✎ Lycée
- Sujet: Fonctions et dérivés
- Réponses: 5
- Vues: 690
et le reste fait - infini, donc le tout fait - infini, sur ma calculette quand je rentre tout ça m'indique + infini, j'ai du oublier des paranthese.
Merci de ton aide
- par gemini45
- 18 Jan 2009, 14:29
-
- Forum: ✎✎ Lycée
- Sujet: Bloqué sur des limites avec ln
- Réponses: 11
- Vues: 979
Je ne peux pas dire directement que (x-1)/x tend vers + infini en + infini, parce x-1 tend vers +infini et x aussi, donc infini/infini = FI
Et en 0 , quelque sur 0 ça donne rien
- par gemini45
- 18 Jan 2009, 14:09
-
- Forum: ✎✎ Lycée
- Sujet: Bloqué sur des limites avec ln
- Réponses: 11
- Vues: 979
Oui c'est en 0 et en + infini excusez moi.
Pas de gros problème ... en tout cas j'ai essayé beaucoup de chose et rien ne marche.
- par gemini45
- 18 Jan 2009, 14:04
-
- Forum: ✎✎ Lycée
- Sujet: Bloqué sur des limites avec ln
- Réponses: 11
- Vues: 979
Bonjour, j'ai des problèmes sur 2 limites, j'ai beau faire n'importe quoi je tombe sur une forme indeterminé.
)
Merci d'avance.
- par gemini45
- 18 Jan 2009, 13:56
-
- Forum: ✎✎ Lycée
- Sujet: Bloqué sur des limites avec ln
- Réponses: 11
- Vues: 979