24 résultats trouvés

Revenir à la recherche avancée


Problème Probabilités

Bonjour, on a n cases numérotées de1 à n et on a 3 jetons qui portent les numéros 1,2 et 3 avec n\geq3 on pose au hasard le 1 sur l'une des cases numérotées de 1 à n-2.Soit i le numéro de la case où est posé le jeton 1 ensuite on pose le jeton 2 dans l'une des cases numérotées de i+1 à n-1.Soit j le...
par tilmo
30 Mar 2009, 21:07
 
Forum: ✎✎ Lycée
Sujet: Problème Probabilités
Réponses: 0
Vues: 499

dure equation!

Bonjou!
soit n de N tel que n2
resoudre dans R l'equation:
=0
Merci d'avance pour votre aide!
par tilmo
04 Mar 2009, 02:12
 
Forum: ✎✎ Lycée
Sujet: dure equation!
Réponses: 1
Vues: 309

Intégrales

Bonjour! on doit calculer la valeur moyenne de ces 2 fonctions: mais j'arrive pas a calculer son intégrale: I=[0,3] f(x)= \frac{e^{2x}-1}{e^{2x}+1} I=[0,1] f(x)= \frac{x^3+5x^2+x-3}{x+1} on doit trouver le fonctions primitives de ces 2 fonctions: I= \mathbb{R}_+^{\large\ast} f(x)=ln(x) I= \mathbb{R}...
par tilmo
25 Fév 2009, 19:28
 
Forum: ✎✎ Lycée
Sujet: Intégrales
Réponses: 2
Vues: 293

j'obtiens (1993x^1992(1-x)-(1-x^1993))/(1-x)² je trouve aussi que x^1992=1
je sais qu'on peut factoriser par 1-x.
est ce que 1-x^n=(1-x)(1+x+x²+...+x^(n-1))??
par tilmo
28 Déc 2008, 16:48
 
Forum: ✎✎ Lycée
Sujet: complexe
Réponses: 7
Vues: 468

oui je sais le probleme c'est quand j fais la derivée de 1-x^1993/1-x ca ne m donne pas ce que je veux!
par tilmo
28 Déc 2008, 14:41
 
Forum: ✎✎ Lycée
Sujet: complexe
Réponses: 7
Vues: 468

complexe

bonjour!
on pose x=
montrer que:
1+2x+3x²+...+1992x^1991=
merci d'avance!
par tilmo
28 Déc 2008, 13:52
 
Forum: ✎✎ Lycée
Sujet: complexe
Réponses: 7
Vues: 468

c'est bon pour la premiere question la lim c'est alpha tel que alpha la solution de l'equation x²lnx=1 mais pour les autres je ne sais pas toujours comment m'y prendre!merci en tout cas pour votre aide!
par tilmo
12 Déc 2008, 14:46
 
Forum: ✎✎ Lycée
Sujet: petites difficultés
Réponses: 2
Vues: 677

petites difficultés

bonsoir! je dois calculer la lim de Un on a (\forall n \in \mathbb{N}*) \exists! Un \in[\frac{1}{\sqrt{e}}, +linf[ : nf(un)-ne-1=0 et lequation x²lnx=1 admet une solution sur cet interval et aussi on a (Un) decroissante et convergente et f(x)= x^{x^2} , x>0 2eme question: soient a b et c des...
par tilmo
12 Déc 2008, 02:29
 
Forum: ✎✎ Lycée
Sujet: petites difficultés
Réponses: 2
Vues: 677

lim ln

bonsoir!
pouvez vous m'aider a resoudre ces 2 limites?
1-

2-
merci d'avance!
par tilmo
30 Nov 2008, 02:55
 
Forum: ✎✎ Lycée
Sujet: lim ln
Réponses: 1
Vues: 304

pouvez vous expliquer?
par tilmo
21 Nov 2008, 22:26
 
Forum: ✎✎ Lycée
Sujet: fonction
Réponses: 15
Vues: 823

c deja calculé!ca donne ca sauf erreur!!
svp c'est quoi la methode suivie?la derivation?
par tilmo
21 Nov 2008, 21:51
 
Forum: ✎✎ Lycée
Sujet: fonction
Réponses: 15
Vues: 823

voila c'est corrigé!c'est que a lorigine c'est un long exercice ou on analyse f sur 3 intervalles de R!sinon toujours pas d'idées?
par tilmo
21 Nov 2008, 21:44
 
Forum: ✎✎ Lycée
Sujet: fonction
Réponses: 15
Vues: 823

bon voila lenoncé comme elle est: on a f(x)=x+2-\sqrt{x^2-4}\text{ pour } x\geq 2 on considere g(x) une fonction definie sur [1,+linf[ tel que g(x)=f(x+2) il faut montrer que ( \forall x\geq1 ) \frac{2}{x+2} < g(x)< \frac{2}{x} puis que ( \forall x\geq1 ) \frac{2}{x}-\frac{4}{x^2} < g(x)< \f...
par tilmo
21 Nov 2008, 21:19
 
Forum: ✎✎ Lycée
Sujet: fonction
Réponses: 15
Vues: 823

je ne comprends pas .on a -2
par tilmo
21 Nov 2008, 20:47
 
Forum: ✎✎ Lycée
Sujet: fonction
Réponses: 15
Vues: 823

ben ...0 ..ou tu vx en venir?
par tilmo
21 Nov 2008, 20:31
 
Forum: ✎✎ Lycée
Sujet: fonction
Réponses: 15
Vues: 823

n.b:y'avait une erreur j l'ai corrigé!
par tilmo
21 Nov 2008, 20:10
 
Forum: ✎✎ Lycée
Sujet: fonction
Réponses: 15
Vues: 823

fonction

bonsoir!
on a
il faut montrer que () < f(x)<
j'ai essayé la methode de derivation mais ca marche pas sauf erreur!!pouvez vous m'aider??merci !
par tilmo
21 Nov 2008, 19:06
 
Forum: ✎✎ Lycée
Sujet: fonction
Réponses: 15
Vues: 823

voila!mon probleme ne concerne pas la première question j'ai juste ecri l'enoncé!j'ai besoin d'aide pour les autres questions!
par tilmo
20 Nov 2008, 23:06
 
Forum: ✎✎ Lycée
Sujet: ln
Réponses: 5
Vues: 486

ln

bonsoir! on a n un entier naturel tel que n \geq 3 on considere la fonction g_n definie sur \mathbb{R}_+^{\large\ast} tel que: gn(x)=nx+2ln(x) 1-poser le tableau de variations de gn 2-montrer que ( \forall x \in \mathbb{R}_+^{\large\ast} ) \sqrt{x} > \ln(x) 3-montrer que l'equation gn(x)=0 a...
par tilmo
20 Nov 2008, 21:57
 
Forum: ✎✎ Lycée
Sujet: ln
Réponses: 5
Vues: 486

theoreme de ROLLE

bonjour! on a n un entier naturel tel que n \geq 2 et f une fonction continue sur [0,1] et derivable sur ]0,1[ tel que: f(0)=1 f(1)= \frac{2n}{2n-1} montrer que \exists c \in ]0,1[ : nf'(c)= \sqrt[n]{c^{n-1}} bon je penses qu'il faut utiliser ROLLE mais je ne trouve pas la fonction a poser!merci de ...
par tilmo
19 Nov 2008, 17:39
 
Forum: ✎✎ Lycée
Sujet: theoreme de ROLLE
Réponses: 1
Vues: 483
Suivante

Revenir à la recherche avancée

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite