8 résultats trouvés
Revenir à la recherche avancée
Bonjour,
Petit défi : chercher (et trouver !) une preuve directe (sans récurrence).
Je ne l'ai pas pour l'instant mais je pense que c'est faisable (probablement pas facile).
P.S. Le site ne marche pas bien : j'ai eu un mal de chien à poster avec des "erreurs" en pagaille.
- par caillou1
- 28 Mar 2024, 14:26
-
- Forum: ⚔ Défis et énigmes
- Sujet: Somme des inverses des coefficients binomiaux
- Réponses: 15
- Vues: 875
Bonjour à tous, Je retranscris ici la démonstration de la formule de récurrence "délicate" telle que je l'avais écrite "ailleurs" il n'y a pas loin de 6 ans : S_n=\sum_{k=0}^n\dfrac{1}{\binom{n}{k}} S_{n+1}=\sum_{k=0}^{n+1}\dfrac{1}{\binom{n+1}{k}}=1+\sum_{k=0}^n\dfrac{k!(n+1...
- par caillou1
- 27 Mar 2024, 18:45
-
- Forum: ⚔ Défis et énigmes
- Sujet: Somme des inverses des coefficients binomiaux
- Réponses: 15
- Vues: 875
Bonjour, A l'infini, il n' y a pas grand problème et en 0 tu peux obtenir un équivalent de l'intégrande. Quant au calcul, une intégration par parties marche bien. On trouve \pi . [Edit] J'ajoute que poster deux fois la même demande n'est pas tellement apprécié. Et que dire de ceci : https://les-math...
- par caillou1
- 26 Juin 2023, 12:13
-
- Forum: ✯✎ Supérieur
- Sujet: Intégrale impropre
- Réponses: 1
- Vues: 250
Bonjour, Ce problème de distance minimale d'un point à une conique mérite quelques développements : Dans l'équation de la parabole proposée, \alpha représente l'angle de son axe et de l'axe des ordonnées. On peut récupérer son foyer F et sa directrice \Delta . Le problème consiste à chercher les poi...
- par caillou1
- 25 Juin 2023, 16:06
-
- Forum: ✯✎ Supérieur
- Sujet: calculer la distance d'un point avec une parabole
- Réponses: 5
- Vues: 392
Bonjour,
J'ai ravalé ma réponse suite à celle de
lyceen95Une précision :
un "calcul simple" permet de déterminer les trois solutions.
A priori il n'y en a que deux.
- par caillou1
- 24 Juin 2023, 09:27
-
- Forum: ✯✎ Supérieur
- Sujet: Résolution d'une équation
- Réponses: 3
- Vues: 248
Bonjour, Le pavé est défini par son centre O et les trois dimensions de ses côtés. Le cône est défini par son sommet P, le vecteur unitaire directeur G de sa hauteur, et le demi angle alpha entre la hauteur et le cône. Il manque la position relative du cône et du pavé pour préciser le volume en ques...
- par caillou1
- 21 Juin 2023, 12:13
-
- Forum: ✯✎ Supérieur
- Sujet: Calcul du volume d'intersection entre un pavé et un cône
- Réponses: 7
- Vues: 410
Bonjour, Une solution alternative consiste à déterminer les centres I et J des homothéties (positive et négative) qui permettent de passer d'un cercle à l'autre. \dfrac{\overline{IO_2}}{\overline{IO_1}}=-\dfrac{\overline{JO_2}}{\overline{JO_1}}=\dfrac{4}{9} I barycentre de \{(O_1,4);(O_2...
- par caillou1
- 17 Juin 2023, 13:05
-
- Forum: ✯✎ Supérieur
- Sujet: Exercice de maths sur les cercles et les tengentes
- Réponses: 5
- Vues: 462