9 résultats trouvés

Revenir à la recherche avancée


Comment qu'on faisait sans calculette avant, aie aie aie ! :o

Pas bète pour la fonction affine !

Merci pour tout :)
par Coolman59
23 Sep 2008, 18:54
 
Forum: ✎✎ Lycée
Sujet: Bornes d'une fonction
Réponses: 13
Vues: 2211

Ti dernière question (si j'y arrive :o)

Ya un méthode pour trouver les bornes d'un combiné de fonction ou c'est à l'ancienne ? :o
par Coolman59
23 Sep 2008, 18:42
 
Forum: ✎✎ Lycée
Sujet: Bornes d'une fonction
Réponses: 13
Vues: 2211

Oki, c'pas grave, on va démontrer ça à l'ancienne xD

Merci de ton aide :)
par Coolman59
23 Sep 2008, 17:57
 
Forum: ✎✎ Lycée
Sujet: Bornes d'une fonction
Réponses: 13
Vues: 2211

Oki !

Le hic, c'est qu'avec ta méthode, si la fonction n'est pas carré, ca passera pas je pense. :/

Les limites : pas encore vu du tout !

:)
par Coolman59
23 Sep 2008, 17:49
 
Forum: ✎✎ Lycée
Sujet: Bornes d'une fonction
Réponses: 13
Vues: 2211

Je reviens faire un ti coucou pour savoir si j'ai bien tout compris et une ptite question au fond d'ma poche ! J'ai une belle fonction : f(x) : [-2 ; 2] => R x => x²-3 Et je dois démontrer que celle-ci est bornée. Donc, j'ai fais ainsi : Au début, j'aurai bien fais comme ça : Pour tout x réel, on a ...
par Coolman59
23 Sep 2008, 16:47
 
Forum: ✎✎ Lycée
Sujet: Bornes d'une fonction
Réponses: 13
Vues: 2211

Ok !

Là au moins, c'est clair ! xD

Merci encore :)

Je reviendrai (sur le même sujet) avec une autre ptite question si j'ai pas trouvé (d'ici demain). Faut bien chercher un peu :)

Bonne soirée à toi ('fin, bonne nuit !) et merci.
par Coolman59
22 Sep 2008, 20:59
 
Forum: ✎✎ Lycée
Sujet: Bornes d'une fonction
Réponses: 13
Vues: 2211

Ah, c'est donc ça ! :o

J'ai réessayé avec g(x)-1

Je trouve bien :
g(x)=>0 !

Donc si je comprends bien le "-2", c'est plus du flair qu'autre chose... ?

Ou sinon, faut tester ? (bon là, c'était écrit dans l'énoncé, donc bon :)

Bah si c'est ça, c'est tout good, merci bien ! :D
par Coolman59
22 Sep 2008, 20:54
 
Forum: ✎✎ Lycée
Sujet: Bornes d'une fonction
Réponses: 13
Vues: 2211

Bornes d'une fonction

Bonjour à tous ! J'ai un ptit soucis avec les fonctions bornées.. en fait ya plusieurs soucis, mais autant commencé par celui qui m'embête le plus ! j'ai une fonction : g(x) : R => R x => (2x²+1) / (x² +1) Et là, on me demande de démontrer que pour tout réel x, on a : 1 == 0 2x² >= 0 2x²+1 >= 1 // x...
par Coolman59
22 Sep 2008, 20:42
 
Forum: ✎✎ Lycée
Sujet: Bornes d'une fonction
Réponses: 13
Vues: 2211

Fonction "intraçable"

Bonsoir à tous, étant nouveau. J'espere de pas mettre trompé de section... Pour des cours de mécaniques, j'ai besoin de traçer quelques fonction (accèleration en m/s² (assez flou pour le moment cette notion de mètres seconde PAR seconde), etc...) Pour donner un exemple concret, cette formule qui dét...
par Coolman59
25 Fév 2008, 22:16
 
Forum: ✎✎ Lycée
Sujet: Fonction "intraçable"
Réponses: 3
Vues: 442

Revenir à la recherche avancée

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite