17 résultats trouvés
Revenir à la recherche avancée
Bonjour, Bonjour! Tu veux bien aller lire le règlement du forum!! Au risque de passer pour une nouille, je n'arrive pas à faire un exercice, j'ai le corrigé sous les yeux et je ne comprends quand même pas xD pourriez vous m'éclairez svp ? :id: * donner un développement limité en 1 à l'ordre 2 de la ...
- par liloo0oo
- 19 Mai 2009, 14:05
-
- Forum: ✯✎ Supérieur
- Sujet: Formule de Taylor
- Réponses: 4
- Vues: 818
Saloute ! Je suis en Terminale S et j'ai un exo de maths à faire pour mardi sur les probas. On vient de commencer le chapitre donc j'ai surement pas encore tout percuté bref. Je suis déjà pomée à la première question alors si quelqu'un voudrait bien me diriger vers le droit chemin ce serait sympa :z...
- par liloo0oo
- 22 Mar 2008, 10:54
-
- Forum: ✎✎ Lycée
- Sujet: Exerice : probabilités
- Réponses: 1
- Vues: 997
pour la 4 tu fais :
I ( o ; 1/2 ) centre de symétrie si :
f ( 0 + h ) + f ( 0 - h ) = 2 * ( 1/2 )
( 2 * etc.. parce que t'as f ( a + h ) + f ( a - h ) = 2b
f ( h ) + f ( - h ) = 1
f ( h ) + f ( - h ) = et la suite ... tu résous quoi
- par liloo0oo
- 28 Nov 2007, 16:20
-
- Forum: ✎✎ Lycée
- Sujet: Fonctions exponentielle
- Réponses: 3
- Vues: 539
je voulais le développer car je suis en train de faire des exercices d'entraînements en prévision d'une interro proche et je ne comprenais pas la réponse que l'on me donnait donc je voulais comprendre tout simplement. :happy2:
merci pour vos réponses
- par liloo0oo
- 20 Nov 2007, 18:18
-
- Forum: ✎✎ Lycée
- Sujet: Exponentielle
- Réponses: 3
- Vues: 354
je ne comprends pas comment développer :
e^(x)*e^(2x + 1)
- par liloo0oo
- 20 Nov 2007, 18:11
-
- Forum: ✎✎ Lycée
- Sujet: Exponentielle
- Réponses: 3
- Vues: 354
Quidam a écrit:Bonjour, merci, au revoir !
tu viens de perdre ton temps, t'aurai pu t'abtsenir

en tout cas tu me sembles très sympatique dis donc !

- par liloo0oo
- 18 Nov 2007, 19:47
-
- Forum: ✎✎ Lycée
- Sujet: re-fonction exponentielle
- Réponses: 5
- Vues: 462
J'ai : f(x) = xe^(1/x) et f(x) - x - 1 = ( e^(1/x) - 1 ) / ( 1/x) Je trouve lim de f(x) -x -1 quand x tends vers +oo = +oo et je dois trouver l'asymptote à la courbe de f(x) - x - 1 d'équatiion y = x - 1 mais je n'arrive pas à trouver 0, je trouve +oo. j'ai fait : lim quand x -> +oo de [ f(x) - x - ...
- par liloo0oo
- 18 Nov 2007, 19:14
-
- Forum: ✎✎ Lycée
- Sujet: re-fonction exponentielle
- Réponses: 5
- Vues: 462
ahh voueppp ! exact :id:
donc dans les deux cas je suis en +oo
chouette ! merci merci c'est gentil je vais pouvoir continuer mon exo :happy2:
- par liloo0oo
- 18 Nov 2007, 18:08
-
- Forum: ✎✎ Lycée
- Sujet: fonction exponentielle
- Réponses: 8
- Vues: 574
je connais e^x / x en +oo c'est +oo mais pas en 0
parce que en 0 ca me donne e^0 = 1 sur lim 0 = 0 donc lim f(x) = 0 non ?
- par liloo0oo
- 18 Nov 2007, 18:04
-
- Forum: ✎✎ Lycée
- Sujet: fonction exponentielle
- Réponses: 8
- Vues: 574
non je ne connais pas :hein: on n'a pas encore fait ça. Remarque ca m'étonnerait pas qu'il nous le balance comme ca ce prof :hum: bon bref...
Il n'y a pas d'autres solutions ? :s
- par liloo0oo
- 18 Nov 2007, 17:54
-
- Forum: ✎✎ Lycée
- Sujet: fonction exponentielle
- Réponses: 8
- Vues: 574
Bonjour bonjour J'ai un exercice à faire et je n'arrive même pas à trouver la première question :hum: ( on ne se moque pas :we: ) la fonction est la suivante : f(x) = xe^(1/x) et je dois trouver les limites aux bornes du domaine de définition ]o;+oo[ je ne peux pas trouver les limites avec la foncti...
- par liloo0oo
- 18 Nov 2007, 17:48
-
- Forum: ✎✎ Lycée
- Sujet: fonction exponentielle
- Réponses: 8
- Vues: 574
Sans méthode d'Euler : f(x)=cos^4x g(x)=cos^3(2x) h(x)=sin^4xcos²x Sans cours au sujet de la linéarisation, j'ai utilisé cos²x = ( ( 1+cos(2x) ) / 2 ) et sin²x = ( ( 1-cos(2x) ) / 2 ) je n'arrive pas à développer le polynôme, au bout d'un moment je bloque :marteau: Si quelqu'un veut bien avoir la ge...
- par liloo0oo
- 20 Sep 2007, 10:52
-
- Forum: ✎✎ Lycée
- Sujet: linéarisation TS
- Réponses: 1
- Vues: 680
Bonjour, Je suis en terminale S et depuis la rentrée nous n'avons qu'étudier le chapitre sur les nombres complexes - on s'est arrêté à la forme exponentielle. Seulement notre prof nous a donné un exo à faire qui demande de linéarisez des polynomes f. Le bouquin donne la méthode d'Euler que nous n'av...
- par liloo0oo
- 19 Sep 2007, 14:03
-
- Forum: ✎✎ Lycée
- Sujet: Linéarisation sans Méthode d'Euler
- Réponses: 3
- Vues: 2428