6 résultats trouvés
Revenir à la recherche avancée
merci pour ta réponse
désolé de te dire que c'est pas la réponse au probléme ! mais merci quand meme!
- par lerockstar
- 13 Sep 2007, 20:52
-
- Forum: ✎✎ Lycée
- Sujet: fonction exponentielle
- Réponses: 11
- Vues: 464
je pense pas puisque que c une activité qui introduit la fonction exp je sais juste que f'=f ect... mais on n'est pas censé utilisé on a vu f(x+y) = f(x)*f(y) merci de ta réponse
- par lerockstar
- 13 Sep 2007, 20:32
-
- Forum: ✎✎ Lycée
- Sujet: fonction exponentielle
- Réponses: 11
- Vues: 464
bonjour à toutes et à tous voici le probléme : f(0) = 1 et f' = kf ou k différent de 0 1) en utilisant un raisonnement par récurrence montrer que pour tout réel x et pour tout entier naturel on a f(nx) = (f(x))^n 2) en déduire que pour tout entier naturel f (-nx) = (f(x))^-n 3) on pose f(1) =a ( a e...
- par lerockstar
- 13 Sep 2007, 20:25
-
- Forum: ✎✎ Lycée
- Sujet: fonction exponentielle
- Réponses: 11
- Vues: 464