17 résultats trouvés

Revenir à la recherche avancée


Re: Aide DM de maths exercice sur approximation affine

Attention avec f(a+h) qui est égal à 1/(a+h) et non pas (1/a) + h :)
par Krismu
25 Juil 2016, 16:08
 
Forum: ✎✎ Lycée
Sujet: Aide DM de maths exercice sur approximation affine
Réponses: 24
Vues: 4864

Re: Aide DM de maths exercice sur approximation affine

Si tu prends a = 1, et
Que vaut ?

Et donc que vaut f(a+h) ?
par Krismu
25 Juil 2016, 15:20
 
Forum: ✎✎ Lycée
Sujet: Aide DM de maths exercice sur approximation affine
Réponses: 24
Vues: 4864

Re: Aide DM de maths exercice sur approximation affine

Si tu appliques la même méthode qu'au dessus, c'est-à-dire de prendre \frac{f(a+h) - f(a)}{h} en l'appliquant à f(x) = \frac{1}{x} puis le transformer en f(a+h)\simeq ... Tu tombes directement sur le résultat. C'est peut-être ce que tu as fait mais tu n'expliques pas ...
par Krismu
25 Juil 2016, 10:20
 
Forum: ✎✎ Lycée
Sujet: Aide DM de maths exercice sur approximation affine
Réponses: 24
Vues: 4864

Re: Aide DM de maths exercice sur approximation affine

Pour le 4, je pense que tu as bon, zygomatique faisait je pense simplement remarquer que le "h" dans ces questions est une valeur "petite".
par Krismu
24 Juil 2016, 17:33
 
Forum: ✎✎ Lycée
Sujet: Aide DM de maths exercice sur approximation affine
Réponses: 24
Vues: 4864

Re: Aide DM de maths exercice sur approximation affine

zygomatique a écrit:dommage de ne pas pouvoir insérer des images directement ...


On peut utiliser, par exemple le site http://imgur.com/
Clique sur "new post" et on glisse dépose notre image, il suffit de copier l'adresse de la nouvelle page ...
par Krismu
23 Juil 2016, 14:39
 
Forum: ✎✎ Lycée
Sujet: Aide DM de maths exercice sur approximation affine
Réponses: 24
Vues: 4864

Re: Aide DM de maths exercice sur approximation affine

Pour la 1), ça semble correct. Pour le 2) pas facile sans le graphique :D, peut-être il faut reporter "a", "h" et "a+h" (et f(a+h)) ? 3) La quantité à devenir "négligeable" est \varepsilon (h) , sinon en écrivant f(a+h) = f(a), t'es pas très avancé(e) ...
par Krismu
23 Juil 2016, 10:35
 
Forum: ✎✎ Lycée
Sujet: Aide DM de maths exercice sur approximation affine
Réponses: 24
Vues: 4864

Re: Devoir maison 1ereS- dérivation

Je ne connais pas le concept d'élasticité, mais si on s'en tient à sa définition, elle sera positive si le prix ET la demande ont le même signe (augmentent ou baissent tous les deux), négative sinon. Donc si le prix baisse et la demande augmente (ou l'inverse) on devrait avoir une élasticité négativ...
par Krismu
22 Juil 2016, 10:03
 
Forum: ✎✎ Lycée
Sujet: Devoir maison 1ereS- dérivation
Réponses: 7
Vues: 815

Re: Devoir maison 1ereS- dérivation

"Evolution" ça veut dire "augmente ou diminue et de combien", c'est-à-dire de quel pourcentage q a bougé, ce qui est le sens de \frac{(qA-qD)}{qD} donc tu as 4 = \frac{\frac{qA-qD}{qD}}{0.02} \Leftrightarrow 4*0.02=\frac{qA-qD}{qD} \Leftrightarrow \frac{qA-qD}{qD}=0.08 = ...
par Krismu
21 Juil 2016, 22:47
 
Forum: ✎✎ Lycée
Sujet: Devoir maison 1ereS- dérivation
Réponses: 7
Vues: 815

Re: Devoir maison 1ereS- dérivation

Bon je sais pas si c'est toujours à temps, mais je te donne quelques pistes... Pour le 1, j'ai pas vérifié tes calculs, mais si on dit que p baisse de 3%, ça veut dire que (pA-pD)/pD = -3/100, idem pour q. Donc il faut faire les calculs (qui ont l'air corrects à vue de nez). Pour le 2, tu as E = 4. ...
par Krismu
21 Juil 2016, 16:28
 
Forum: ✎✎ Lycée
Sujet: Devoir maison 1ereS- dérivation
Réponses: 7
Vues: 815

Re: Limite de x*exp(x^2*(1/x-1)) en l'infini

Bon on m'a donné une solution pas mal: f(x) = x e^{x-x^2} = x e^{-x-(x^2+2x)} = x e^{-x}e^{-(x^2+2x)} On étudie les 2 premiers termes, qui tendent vers 0, puis le dernier, vers 0 aussi, et ça doit être bon. Ne serait ce pas plutôt : f(x) = x e^{x-x^2} = x e^{-x-(...
par Krismu
21 Juil 2016, 09:51
 
Forum: ✎✎ Lycée
Sujet: Limite de x*exp(x^2*(1/x-1)) en l'infini
Réponses: 13
Vues: 2090

Re: Limite de x*exp(x^2*(1/x-1)) en l'infini

zygomatique a écrit:ha oui j'ai mal lu ton expression ... mais ton écriture participe de la même idée et donne la réponse sans pb .... en +oo (mais pas en -oo)

En -oo c'est pas un soucis puisque est une limite connue, et tendra également vers 0. Mais merci encore pour la piste donnée ;)
par Krismu
21 Juil 2016, 09:50
 
Forum: ✎✎ Lycée
Sujet: Limite de x*exp(x^2*(1/x-1)) en l'infini
Réponses: 13
Vues: 2090

Re: Limite de x*exp(x^2*(1/x-1)) en l'infini

Bon on m'a donné une solution pas mal:



On étudie les 2 premiers termes, qui tendent vers 0, puis le dernier, vers 0 aussi, et ça doit être bon.
par Krismu
20 Juil 2016, 18:29
 
Forum: ✎✎ Lycée
Sujet: Limite de x*exp(x^2*(1/x-1)) en l'infini
Réponses: 13
Vues: 2090

Re: Limite de x*exp(x^2*(1/x-1)) en l'infini

Oups j'ai lu trop vite, je viens de réaliser que la puissance n'est pas celle que je recherche: f(x) = x e^{x^2*({\frac {1}{x} - 1})} <- ce que je cherche f(x) = x e^{\frac {x^2}{x - 1}} <- ta proposition Je maîtrise pas trop l'utilisation du tag tex, du coup c'est plus lisib...
par Krismu
20 Juil 2016, 18:14
 
Forum: ✎✎ Lycée
Sujet: Limite de x*exp(x^2*(1/x-1)) en l'infini
Réponses: 13
Vues: 2090

Re: Limite de x*exp(x^2*(1/x-1)) en l'infini

Ah oui belle équivalence, je pense que c'est ce que je dois faire, merci beaucoup !
par Krismu
20 Juil 2016, 16:44
 
Forum: ✎✎ Lycée
Sujet: Limite de x*exp(x^2*(1/x-1)) en l'infini
Réponses: 13
Vues: 2090

Re: Limite de x*exp(x^2*(1/x-1)) en l'infini

En fait je suppose que l'exercice de base ne voulait pas aller si loin, j'ai sans doute cherché la petite bête, et j'en ai trouvé une grosse ;) Merci encore ! PS: la croissance comparée est "moins naturelle" à appliquer du fait que l'exponentielle est en "x²" et non en "x&qu...
par Krismu
20 Juil 2016, 13:12
 
Forum: ✎✎ Lycée
Sujet: Limite de x*exp(x^2*(1/x-1)) en l'infini
Réponses: 13
Vues: 2090

Re: Limite de x*exp(x^2*(1/x-1)) en l'infini

Merci ! Ceci dit, le chapitre sur les exponentielles précède celui sur les logarithmes, du coup je ne pense pas que ce soit la réponse attendue par ceux qui ont conçu l'exercice :D A ce stade du cours, il n'est pas non plus encore fait mention de la croissance comparée. Mais ça fait au moins une faç...
par Krismu
20 Juil 2016, 12:40
 
Forum: ✎✎ Lycée
Sujet: Limite de x*exp(x^2*(1/x-1)) en l'infini
Réponses: 13
Vues: 2090

Limite de x*exp(x^2*(1/x-1)) en l'infini

Bonjour, Je m'inscris sur ce forum car, ayant un peu de temps, je (re)fais le programme de terminale S de mathématiques, avant tout par intérêt personnel. Je tombe sur un exercice dont je ne suis pas sûr de la méthode à utiliser. On cherche une limite: x*exp(x^2*(1/x-1)) en +inf et -...
par Krismu
20 Juil 2016, 11:10
 
Forum: ✎✎ Lycée
Sujet: Limite de x*exp(x^2*(1/x-1)) en l'infini
Réponses: 13
Vues: 2090

Revenir à la recherche avancée

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite