3 résultats trouvés

Revenir à la recherche avancée


WillyCagnes a écrit:4^n/5^n tend vers 0 qd n tend + infini
idem pour
2^n/3^n

et il te reste:
soit (5/3)^n >1 qui tend vers +infini qd n -> + infini

merci beacoup :)
par maruana
31 Mai 2015, 14:42
 
Forum: ✎✎ Lycée
Sujet: Recherche de limite avec des puissance de N
Réponses: 6
Vues: 1542

zygomatique a écrit:salut

factorise le numérateur par 5^n et le dénominateur par 3^n

....


du coup je suis arrivé a 5^n(1+(4^n/5^n)) / 3^n + (1 + (2^n/3^n))

comment trouver la limite grace a ce resultat ? merci
par maruana
31 Mai 2015, 13:49
 
Forum: ✎✎ Lycée
Sujet: Recherche de limite avec des puissance de N
Réponses: 6
Vues: 1542

Recherche de limite avec des puissance de N

Bonjour a tous,

Je m'adresse a vous car j'ai un petit problème lors de mes révisions, en effet j’étais en train de refaire des recherches de limite mais je bloque sur celui ci

(5^n + 4^n) / (3^n + 2^n )

je crois qu il faut factoriser mais je ne sais pas le quel, voila merci ^^
par maruana
31 Mai 2015, 13:24
 
Forum: ✎✎ Lycée
Sujet: Recherche de limite avec des puissance de N
Réponses: 6
Vues: 1542

Revenir à la recherche avancée

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite