Cas d'égalité des triangles
Réponses à toutes vos questions du CP à la 3ème
-
charles10
- Messages: 9
- Enregistré le: 14 Déc 2012, 13:26
-
par charles10 » 14 Déc 2012, 13:42
Bonjour,
Un des cas d'égalité des triangles est un côté égal compris entre 2 angles égaux. Pourquoi doit-il est compris entre 2 angles égaux ? Si on dit plus généralement 2 angles égaux et un quelconque côté égal, n'est-ce pas correct ? En effet, si 2 angles égaux, on a affaire à 2 triangles semblables et si un quelconque des côtés est en plus égal à un côté de l'autre triangle, le rapport de similitude est de 1, ce qui conduit à 2 triangles égaux. Où donc est-ce que je me trompe ?
-
chan79
- Membre Légendaire
- Messages: 10330
- Enregistré le: 04 Mar 2007, 19:39
-
par chan79 » 14 Déc 2012, 13:58
charles10 a écrit:Bonjour,
Un des cas d'égalité des triangles est un côté égal compris entre 2 angles égaux. Pourquoi doit-il est compris entre 2 angles égaux ? Si on dit plus généralement 2 angles égaux et un quelconque côté égal, n'est-ce pas correct ? En effet, si 2 angles égaux, on a affaire à 2 triangles semblables et si un quelconque des côtés est en plus égal à un côté de l'autre triangle, le rapport de similitude est de 1, ce qui conduit à 2 triangles égaux. Où donc est-ce que je me trompe ?
Salut
Regarde ces deux triangles, qui ne sont pas égaux
[img]
[IMG]http://img705.imageshack.us/img705/323/62484070.gif[/img]
-
kalyster
- Membre Naturel
- Messages: 87
- Enregistré le: 30 Nov 2011, 21:43
-
par kalyster » 14 Déc 2012, 14:29
charles10 a écrit:Bonjour,
Un des cas d'égalité des triangles est un côté égal compris entre 2 angles égaux. Pourquoi doit-il est compris entre 2 angles égaux ? Si on dit plus généralement 2 angles égaux et un quelconque côté égal, n'est-ce pas correct ? En effet, si 2 angles égaux, on a affaire à 2 triangles semblables et si un quelconque des côtés est en plus égal à un côté de l'autre triangle, le rapport de similitude est de 1, ce qui conduit à 2 triangles égaux. Où donc est-ce que je me trompe ?
Ce serait vrai si effectivement ils avaient le MEME coté de même longueur.
Le contre exemple est suggéré au dessus ^^
-
charles10
- Messages: 9
- Enregistré le: 14 Déc 2012, 13:26
-
par charles10 » 14 Déc 2012, 14:48
Merci pour ta réponse convaincante. Au lieu de dire "1 quelconque côté égal, si on dit 1 côté homologue égal et 2 angles égaux, alors là la généralisation devient correcte il me semble, et dans ce cas pourquoi n'énonce-t-on pas ce théorème de cette façon plus générale et moins restrictive ?
-
chan79
- Membre Légendaire
- Messages: 10330
- Enregistré le: 04 Mar 2007, 19:39
-
par chan79 » 14 Déc 2012, 15:49
charles10 a écrit:Merci pour ta réponse convaincante. Au lieu de dire "1 quelconque côté égal, si on dit 1 côté homologue égal et 2 angles égaux, alors là la généralisation devient correcte il me semble, et dans ce cas pourquoi n'énonce-t-on pas ce théorème de cette façon plus générale et moins restrictive ?
On pourrait dire: "Si deux triangles ont deux angles égaux, alors ils sont semblables et si en plus, deux côtés homologues sont égaux, alors ils sont égaux."
Mais est-ce plus simple ?
Personellement, je préfère dire "isométriques" au lieu de "égaux".
-
charles10
- Messages: 9
- Enregistré le: 14 Déc 2012, 13:26
-
par charles10 » 14 Déc 2012, 16:12
chan79 a écrit:On pourrait dire: "Si deux triangles ont deux angles égaux, alors ils sont semblables et si en plus, deux côtés homologues sont égaux, alors ils sont égaux."
Mais est-ce plus simple ?
Personellement, je préfère dire "isométriques" au lieu de "égaux".
D'accord pour isométrique. Plus simple, peut-être pas, mais moins restrictif certainement et plus général surtout. On pourrait dire simplement : "2 triangles sont isométriques s'ils ont 2 angles égaux et 1 côté homologue égal." au lieu de restreindre le champs en disant 1 côté compris entre 2 angles égaux.
-
charles10
- Messages: 9
- Enregistré le: 14 Déc 2012, 13:26
-
par charles10 » 16 Déc 2012, 13:59
Question subsidiaire : comment sait-on que ces 2 triangles rectangles inégaux de ton dessin ont bien 2 angles égaux de respectivement 30 et 60°?
-
chan79
- Membre Légendaire
- Messages: 10330
- Enregistré le: 04 Mar 2007, 19:39
-
par chan79 » 16 Déc 2012, 14:10
charles10 a écrit:Question subsidiaire : comment sait-on que ces 2 triangles rectangles inégaux de ton dessin ont bien 2 angles égaux de respectivement 30 et 60°?
Salut
Je les ai construits pour cela.
Pour le premier, on construit d'abord [AB] de longueur 6 et on place les deux angles de 30° et 60°
Pour le second, on commence par [DF] de longueur 6 et on place les deux angles de 30° et 90°.
A noter que DE=

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 21 invités