Bootstrap paramétrique
Discussion générale entre passionnés et amateurs de mathématiques sur des sujets mathématiques variés
-
badgones65
- Messages: 5
- Enregistré le: 06 Juil 2006, 12:44
-
par badgones65 » 06 Juil 2006, 12:55
Bonjour tout le monde,
j effectue des bootstraps paramétriques sur des échantillons de données. Apres cela, je calcule mes intervalles de confiance. Mon probleme est le suivant:
-lorsque j augment le nombre d'échantillons de données ou d'échantillons répliqués l'intervalle de confiance est meilleur. jusqu ici, rien de surprenant.
- Par contre lorsque j augmente ma taille des échantillons de données c'est a dire plus de données pour chaque échantillon, ma précision explose et j obtient des resultats incohérents.
Je me demandais si il n'y avait pas une condition sur la taille des échantillons de départ du genre la taille des échantillons de départ << aux nombres d'échantillons répliqués???
Pour moi ceci reste une enigme.
Si vous pouvez m éclairer...
Merci d'avance
-
kms040584
- Membre Naturel
- Messages: 22
- Enregistré le: 12 Juil 2006, 10:11
-
par kms040584 » 20 Juil 2006, 13:48
Salut,
j'ai moi aussi réalisé des tests bootstrap dans le cadre de modélisations statistiques. Qu'entends-tu exactement par résultats incohérents et sur quoi portent tes tests?
-
nekros
- Membre Irrationnel
- Messages: 1507
- Enregistré le: 30 Oct 2005, 18:57
-
par nekros » 20 Juil 2006, 14:00
Salut,
Juste comme ça, c'est quoi des tests bootstrap ? :hein:
Merci
Thomas G :zen:
-
kms040584
- Membre Naturel
- Messages: 22
- Enregistré le: 12 Juil 2006, 10:11
-
par kms040584 » 20 Juil 2006, 15:06
Salut,
en fait le bootstrap est une méthode utilisée en stat, qui permet d'avoir une estimation d'une quantité (médiane, variance) définie sur une distribution ainsi qu'une mesure d'incertitude (intervalle de confiance) pesant sur cette estimation.
En gros tu prends un échantillon (X1,....Xn) ainsi qu'une statistique S(X1,...Xn) sur celui-ci.
Ensuite on génère des échantillons (X1*,....Xn*), (X1**,....Xn**),... -> généralement 50-200 échantillons, de même taille que (X1,...,Xn).
Tu calcules la statistique S() pour chacun des échantillons -> 50-200 valeurs S.
Ces différentes valeurs permettent d'avoir une estimation de la quantité recherchée Q (la moyenne) ainsi que de définir un intervalle de confiance.
On va par exemple parler d'un test bootstrap à 90% si on envèle les 5% valeurs de S les plus élevées et les 5% les moins élevées.
On obtient alors Q et IC=[Smin;Smax].
Cela permet de valider certains tests: par exemple lorsque la taille des échantillons est trop faible pour utiliser des tests asymptotiques directs qui requièrent des grandes tailles (N>300 par ex), on dira que tel échantillon suit telle loi si le Q estimé est dans IC.Mais les applications sont très variées!
Voila, j'espère avoir été clair.
A plus
K.
-
nekros
- Membre Irrationnel
- Messages: 1507
- Enregistré le: 30 Oct 2005, 18:57
-
par nekros » 20 Juil 2006, 15:12
Oui c'est clair, merci ! :we:
Thomas G :zen:
-
badgones65
- Messages: 5
- Enregistré le: 06 Juil 2006, 12:44
-
par badgones65 » 21 Juil 2006, 14:41
en fait je réalise tout d abord N échantillons simulés d une loi de weibull a trois paramètres. Ce sont mes N échantillons initiaux à n données chacun. Je réalise B repliques de chaque échantillon par bootstrap paramétrique ( j estime en fait un paramètre qui me permet de generer des echantillons grace a une routine). A partir de ces echantillons repliques je pe calculer mes intervalles de confiance sur le paramètre que j estime (par differentes methodes: t-bootstrap, BCa, percentile...).
En fait c assez difficile de te décrire ce que j estime pke c une routine qui a été créé par qqun d otre qui est du domaine physique (domaine que je ne connai pas trop). en fait mon seul probleme c que si le nombre de donnees depasse le nombre de repliques je trouve par exemple pour un intervalle a 10%: 14% de ratages a gauche et 20% a droite ce qui est incohérent pke je devrais trouver des taux de ratages proche de 5%.
Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 23 invités