Equation

Réponses à toutes vos questions de la 2nde à la Terminale toutes séries
darkode
Membre Naturel
Messages: 37
Enregistré le: 13 Sep 2012, 17:17

Equation

par darkode » 11 Oct 2012, 00:17

Je me rappelle avoir déja lu , dans un cahier , l'équation suivante :

x² + x + 1 = 0

Un élève a répondu par

x²+ x + 1 = 0
-x² = ( x + 1 ) et x ( x+1) + 1 = 0
x(-x²) +1 = 0
x^3 = 1
x = 1

donc 1 est une solution d'après la démo , mais elle n'est pas valable , car cette élève a commi une certaine erreur ...

Pourriez vous m'indiquez l'erreur ?



Stephanelam
Membre Relatif
Messages: 327
Enregistré le: 11 Fév 2010, 17:43

par Stephanelam » 11 Oct 2012, 08:17

darkode a écrit:Je me rappelle avoir déja lu , dans un cahier , l'équation suivante :

x² + x + 1 = 0

Un élève a répondu par

x²+ x + 1 = 0
-x² = ( x + 1 ) et x ( x+1) + 1 = 0
x(-x²) +1 = 0
x^3 = 1
x = 1

donc 1 est une solution d'après la démo , mais elle n'est pas valable , car cette élève a commi une certaine erreur ...

Pourriez vous m'indiquez l'erreur ?


Salut,

Le problème en question est une équation, et non un système d'équations, tu ne peux pas passer de la première ligne à la deuxième ligne comme ici, et encore moins faire une substitution dans une seule équation ...

Tu peux néanmoins passer par le discriminant d'un trinôme du second degré pour résoudre cette équation.

:jap:

hammana
Membre Relatif
Messages: 477
Enregistré le: 24 Avr 2012, 20:26

par hammana » 11 Oct 2012, 09:18

darkode a écrit:Je me rappelle avoir déja lu , dans un cahier , l'équation suivante :

x² + x + 1 = 0

Un élève a répondu par

x²+ x + 1 = 0
-x² = ( x + 1 ) et x ( x+1) + 1 = 0
x(-x²) +1 = 0
x^3 = 1
x = 1

donc 1 est une solution d'après la démo , mais elle n'est pas valable , car cette élève a commi une certaine erreur ...

Pourriez vous m'indiquez l'erreur ?


Petite question de logique
Si tous les suédois sont blonds et tous les suédois sont grands donc tous le suédois sont grands et blonds. Je ne peux pas en conclure que tous les grands et blonds sont suédois.


En écrivant x^3-1=(x-1)(x²+x+1) vous voyez que toute solution de x²+x+1=0 est solution de x^3=1 mais pas l'inverse.

Si on a 2 équations f=0 et g=0, on démontre qu'une combinaison linéaire de ces deux équations n'introduit pas de solution parasite. Toute autre manipulation sur f et g doit êtrre examinée pour s'assurer qu'elle n'introduit pas de solution parasite.

tototo
Membre Rationnel
Messages: 954
Enregistré le: 08 Nov 2011, 07:41

par tototo » 11 Oct 2012, 15:34

Je me rappelle avoir déja lu , dans un cahier , l'équation suivante :

x² + x + 1 = 0

Un élève a répondu par

x²+ x + 1 = 0
-x² = ( x + 1 ) et x ( x+1) + 1 = 0
x(-x²) +1 = 0
-x^3 = 1


donc 1 est une solution d'après la démo , mais elle n'est pas valable , car cette élève a commi une certaine erreur ...

Pourriez vous m'indiquez l'erreur ?

Bonjour,

x²+ x + 1 = 0
delta=(1)^2-4*(1)*(1)=- 3 < 0

hammana
Membre Relatif
Messages: 477
Enregistré le: 24 Avr 2012, 20:26

par hammana » 12 Oct 2012, 09:08

tototo a écrit:Je me rappelle avoir déja lu , dans un cahier , l'équation suivante :

x² + x + 1 = 0

Un élève a répondu par

x²+ x + 1 = 0
-x² = ( x + 1 ) et x ( x+1) + 1 = 0
x(-x²) +1 = 0
-x^3 = 1


donc 1 est une solution d'après la démo , mais elle n'est pas valable , car cette élève a commi une certaine erreur ...

Pourriez vous m'indiquez l'erreur ?

Bonjour,

x²+ x + 1 = 0
delta=(1)^2-4*(1)*(1)=- 3 < 0


Regardez dans le site suivant:

http://villemin.gerard.free.fr/Wwwgvmm/Nombre/ZerAlgeb.htm

 

Retourner vers ✎✎ Lycée

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 103 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite