Difficultés en inéquations

Réponses à toutes vos questions de la 2nde à la Terminale toutes séries
lexia99
Membre Naturel
Messages: 43
Enregistré le: 21 Oct 2007, 14:53

difficultés en inéquations

par lexia99 » 16 Sep 2012, 13:07

Bonjour;
en effectuant mon exercice sur les inéquations il y en a une dont j'ai des difficultés à résoudre :

;)(x+5) > 2;)(x) - ;)(2-x)

premièrement j'essai d'enlever les racines en élevant l’expression au carré ce qui me donne une identité remarquable pour le membre de droite: [ 2;)(x) - ;)(2-x) ]² mais les racines sont toujours présentes lorsque je développe : x+5 > 4x-4;)x.;)(2-x)+2-x qui n'est pas résolvable.

pouvez vous m'indiquer les étapes à suivre ? merci beaucoup.



Avatar de l’utilisateur
chan79
Membre Légendaire
Messages: 10330
Enregistré le: 04 Mar 2007, 19:39

par chan79 » 16 Sep 2012, 13:24

lexia99 a écrit:Bonjour;
en effectuant mon exercice sur les inéquations il y en a une dont j'ai des difficultés à résoudre :

;)(x+5) > 2;)(x) - ;)(2-x)

premièrement j'essai d'enlever les racines en élevant l’expression au carré ce qui me donne une identité remarquable pour le membre de droite: [ 2;)(x) - ;)(2-x) ]² mais les racines sont toujours présentes lorsque je développe : x+5 > 4x-4;)x.;)(2-x)+2-x qui n'est pas résolvable.

pouvez vous m'indiquer les étapes à suivre ? merci beaucoup.

Salut
Vois d'abord les valeurs de x autorisées
ensuite écris
Ensuite, on peut élever au carré

lexia99
Membre Naturel
Messages: 43
Enregistré le: 21 Oct 2007, 14:53

par lexia99 » 16 Sep 2012, 13:49

chan79 a écrit:Salut
Vois d'abord les valeurs de x autorisées
ensuite écris
Ensuite, on peut élever au carré


j'ai trouvé x>ou= 2

puis ;)(x+5)+;)(2-x)>2;)x
=x+5+2;)(x+5).;)(2-x)+2-x > 2x
=7+2;)(x+5).;)(2-x)>2x

et là je suis bloqué :cry:

p-convexe
Membre Naturel
Messages: 26
Enregistré le: 16 Sep 2012, 03:04

par p-convexe » 16 Sep 2012, 14:31

lexia99 a écrit:j'ai trouvé x>ou= 2

puis ;)(x+5)+;)(2-x)>2;)x
=x+5+2;)(x+5).;)(2-x)+2-x > 2x
=7+2;)(x+5).;)(2-x)>4x (vous avez fait une erreur)

et là je suis bloqué :cry:
Il faut transformer l' inégalité : 2;)(x+5).;)(2-x)>4x-7 en envisageant les 2 cas :
A : 4x-70
Vous transformez chaque inégalité de manière à ce que de chaque côté il n'y ait que des expressions positives, ensuite vous pourrez élever au carré. La suite est élémentaire : vous résolverez 2 équations (l'une des 2 inégalité A ou B ne va pas vérifier votre problème ...)
Vous noterez aussi que x <2 , pour que ;)(2-x) ait un sens !

lexia99
Membre Naturel
Messages: 43
Enregistré le: 21 Oct 2007, 14:53

par lexia99 » 16 Sep 2012, 14:48

[quote="p-convexe"]Il faut transformer l' inégalité : 2;)(x+5).;)(2-x)>4x-7 en envisageant les 2 cas :
A : 4x-70
Vous transformez chaque inégalité de manière à ce que de chaque côté il n'y ait que des expressions positives, ensuite vous pourrez élever au carré. La suite est élémentaire : vous résolverez 2 équations (l'une des 2 inégalité A ou B ne va pas vérifier votre problème ...)
Vous noterez aussi que x 4x-7 ou 4x-70 afin qu'il n'y ai que des expressions positives ? pourriez vous juste me lancer à la 1ere étape que je puisse amorcer les calculs ?

p-convexe
Membre Naturel
Messages: 26
Enregistré le: 16 Sep 2012, 03:04

par p-convexe » 16 Sep 2012, 16:35

lexia99 a écrit:je m’excuse mais je ne comprend pas si il faut travailler 2;)(x+5).;)(2-x)>4x-7 ou 4x-70 afin qu'il n'y ai que des expressions positives ? pourriez vous juste me lancer à la 1ere étape que je puisse amorcer les calculs ?

Soit l'inégalité : 3>-4 , évident !
Elevez maintenant au carré les 2 membres de l'inégalité vous obtenez : 9>16 ! , vous avez compris pourquoi il faut connaître le signe de chaque membre de l'inégalité, donc quand on l'ignore il faut envisager les 2 cas.

 

Retourner vers ✎✎ Lycée

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 101 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite