Volume d'un réservoir

Réponses à toutes vos questions de la 2nde à la Terminale toutes séries
phenix00
Membre Naturel
Messages: 12
Enregistré le: 05 Mai 2012, 11:09

Volume d'un réservoir

par phenix00 » 05 Mai 2012, 11:15

bonjour, j'aurais besoin d'aide pour un exercice :

Un réservoir est constitué d'une pyramide régulière a base carré de 1 m de coté , et d'un cube de 1 m de coté (le cube étant au dessus de la pyramide)
En bas du réservoir est fixé un robinet qui assure un débit constant de 100 litres a l'heure. Le réservoir est rempli d'eau.

1) Calculez le volume du réservoir
2)si on ouvre le robinet, quel sera le temps nécessaire pour vider le réservoir ?
3) On note h(t) la hauteur en m de l'eau dans le réservoir, t heures après l'ouverture du robinet (on a donc h(0)=2).
a)calcule h(1), h(2).
b)pour quelle valeur de t a-t-on h(t)=1 ?
c)montrez que h(15)=0.
d)calculez h(11).
4)Exprimez h(t) en fonction fr t, pour t [appartient] [0; 10].

J'ai réussi a faire la question 1, mais après je suis bloqué n_n Pouvez vous m'aidez svp ? :x



Kikoo <3 Bieber
Membre Transcendant
Messages: 3814
Enregistré le: 28 Avr 2012, 09:29

par Kikoo <3 Bieber » 05 Mai 2012, 11:22

phenix00 a écrit:bonjour, j'aurais besoin d'aide pour un exercice :

Un réservoir est constitué d'une pyramide régulière a base carré de 1 m de coté , et d'un cube de 1 m de coté (le cube étant au dessus de la pyramide)
En bas du réservoir est fixé un robinet qui assure un débit constant de 100 litres a l'heure. Le réservoir est rempli d'eau.

1) Calculez le volume du réservoir
2)si on ouvre le robinet, quel sera le temps nécessaire pour vider le réservoir ?
3) On note h(t) la hauteur en m de l'eau dans le réservoir, t heures après l'ouverture du robinet (on a donc h(0)=2).
a)calcule h(1), h(2).
b)pour quelle valeur de t a-t-on h(t)=1 ?
c)montrez que h(15)=0.
d)calculez h(11).
4)Exprimez h(t) en fonction fr t, pour t [appartient] [0; 10].

J'ai réussi a faire la question 1, mais après je suis bloqué n_n Pouvez vous m'aidez svp ? :x

Yo !
Let's try la question 2 tout de même :)

phenix00
Membre Naturel
Messages: 12
Enregistré le: 05 Mai 2012, 11:09

par phenix00 » 05 Mai 2012, 12:46

Kikoo <3 Bieber a écrit:Yo !
Let's try la question 2 tout de même :)


Salut,

En fait, c'est plus difficile vu qu'on ne sait pas la hauteur de l"eau dans le réservoir.
[img][IMG][img]http://nsa21.casimages.com/img/2012/05/05/mini_120505015748638097.png[/img][/IMG][/IMG]

phenix00
Membre Naturel
Messages: 12
Enregistré le: 05 Mai 2012, 11:09

par phenix00 » 05 Mai 2012, 16:35

En fait, c'est le h(t) qui me gène, si le volume de l'eau était jusqu'en haut, j'aurais su.

Elisasa
Messages: 5
Enregistré le: 05 Mai 2012, 15:51

par Elisasa » 05 Mai 2012, 16:37

Bonjour, je sais que vous etes en lycée, mais pouvez vous quand meme m'aider ? je suis en 3° et j'aurai besoin d'aide pour un DM de maths. Je suis nouvelle sur ce site. Je ne vous demandes pas forcément de tout me résoudre, mais juste de me donner quelques explications c'est assez important. :$

Voici l'Ennoncé posé :

Du balcon de mon appartement situé au 2° étage d'un immeuble, j'aperçois dans le chantier situé en face, une grue. L'immeuble se trouve exactement à 19.8m du pied de la grue. Placé à 8m au-dessus du sol, j'ai déterminé (à l'aide d'un rapporteur ) l'angle sous lequel je voyais la grue; é en face, une grue.
Cet angle BOA est égal à 61°.

Questions posées :

1.) En appelant H le point du segment BA tel que (OH) et (AB) soient perpendiculaires, et en constatant que HA=8m, calculer la mesure de l'angle HOA.
2.) Calucler HB arrondie au degrés.
3.) En déduire la hauteur de la grue au cm près.

Je trouve cet exercice plutot difficile. Vous avez pu le voir, j'ai des lacunes en math. En vous remerciant d'avance.

Dlzlogic
Membre Transcendant
Messages: 5273
Enregistré le: 14 Avr 2009, 12:39

par Dlzlogic » 05 Mai 2012, 17:36

phenix00 a écrit:En fait, c'est le h(t) qui me gène, si le volume de l'eau était jusqu'en haut, j'aurais su.

Dans la question 2) on suppose le réservoir plein.

phenix00
Membre Naturel
Messages: 12
Enregistré le: 05 Mai 2012, 11:09

par phenix00 » 05 Mai 2012, 18:36

Ah bon, tes sur ? Si c'est ca, il y a que le 3) que je n'y arrive pas ^^"
(merci)

Kikoo <3 Bieber
Membre Transcendant
Messages: 3814
Enregistré le: 28 Avr 2012, 09:29

par Kikoo <3 Bieber » 05 Mai 2012, 18:42

Désolé pour le retard (j'ai fait ma petite sieste) :girl2:

La perte d'eau est proportionnelle au temps, et la baisse de volume suit ainsi un profil...

phenix00
Membre Naturel
Messages: 12
Enregistré le: 05 Mai 2012, 11:09

par phenix00 » 06 Mai 2012, 13:10

Oui, mais quand l'eau arrive au niveau de la pyramide, sa devient plus difficile :x

Kikoo <3 Bieber
Membre Transcendant
Messages: 3814
Enregistré le: 28 Avr 2012, 09:29

par Kikoo <3 Bieber » 06 Mai 2012, 13:17

phenix00 a écrit:Oui, mais quand l'eau arrive au niveau de la pyramide, sa devient plus difficile :x

Mais non, ce n'est pas plus difficile !
Le débit est constant, donc la perte d'eau est aussi...

Dlzlogic
Membre Transcendant
Messages: 5273
Enregistré le: 14 Avr 2009, 12:39

par Dlzlogic » 06 Mai 2012, 13:45

Kikoo <3 Bieber a écrit:Mais non, ce n'est pas plus difficile !
Le débit est constant, donc la perte d'eau est aussi...

Si c'est plus difficile, le débit étant constant, la variation de hauteur d'eau n'est pas linéaire.

Kikoo <3 Bieber
Membre Transcendant
Messages: 3814
Enregistré le: 28 Avr 2012, 09:29

par Kikoo <3 Bieber » 06 Mai 2012, 13:56

Excusez-moi... :marteau: la variation de débit étant constante, le volume diminue suivant un profil...

Depuis tout à l'heure, j'essaie de le lui faire deviner tant de fois que j'en perds mon latin.

phenix00
Membre Naturel
Messages: 12
Enregistré le: 05 Mai 2012, 11:09

par phenix00 » 06 Mai 2012, 14:30

Oui, mais l'eau diminue plus vite dans un espace plus petit, donc, plus l'eau s'approche du sommet de la pyramide, plus l'eau descend plus vite.

Dlzlogic
Membre Transcendant
Messages: 5273
Enregistré le: 14 Avr 2009, 12:39

par Dlzlogic » 06 Mai 2012, 14:46

phenix00 a écrit:Oui, mais l'eau diminue plus vite dans un espace plus petit, donc, plus l'eau s'approche du sommet de la pyramide, plus l'eau descend plus vite.

C'est tout à fait vrai.
Il ne reste plus qu'à l'écrire mathématiquement.

phenix00
Membre Naturel
Messages: 12
Enregistré le: 05 Mai 2012, 11:09

par phenix00 » 06 Mai 2012, 15:03

Bein c'est justement ca que j'y arrive pas :x

phenix00
Membre Naturel
Messages: 12
Enregistré le: 05 Mai 2012, 11:09

par phenix00 » 06 Mai 2012, 19:44

Aussi, mon pour la question 3, mon prof m'a dit que h(1heure)=0.1 m et j'ai pas compris.

phenix00
Membre Naturel
Messages: 12
Enregistré le: 05 Mai 2012, 11:09

par phenix00 » 07 Mai 2012, 16:50

je crois qu'il faut déjà trouver le résultat en décamètre, puis le convertir en mètres.

phenix00
Membre Naturel
Messages: 12
Enregistré le: 05 Mai 2012, 11:09

par phenix00 » 08 Mai 2012, 11:41

Bonjour, je crois que j'ai trouvé pour le a), b) et c) du 3) :

a) h(1) = 0.1 m ou 0.1 m3 (je sais pas)
h(2) = 0.2 m ou 0.2 m3 " "
b) h(10) = 1
c) h(15) = 0 car le réservoir est complètement vidé au boute de 13 heures

Pouvez vous me dire si j'ai bon svp ? et me confirmé si c'est des m ou m3 que je dois mettre ? Merci

Dlzlogic
Membre Transcendant
Messages: 5273
Enregistré le: 14 Avr 2009, 12:39

par Dlzlogic » 08 Mai 2012, 12:52

Bonjour,
Quand vous mesurez une hauteur, ce sont des mètres, des m², des m3, des litres, des Kg.?
Je n'ai pas fait le calcul, mais comme vous calculez la hauteur d'eau au bout d'un certain temps de vidange, plus je temps passe, moins il y a d'eau, donc, moins la hauteur est grande.
Si je vois h(1) = 0.1 puis h(10) = 1, je suis sûr que c'est faux, sauf s'il a plu très fort.

phenix00
Membre Naturel
Messages: 12
Enregistré le: 05 Mai 2012, 11:09

par phenix00 » 08 Mai 2012, 13:24

Donc, d’après toi, h(1) = 2-0.1 = 1.9 m ?

 

Retourner vers ✎✎ Lycée

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 74 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite