équation fonctionnelle
Réponses à toutes vos questions de la 2nde à la Terminale toutes séries
-
lol37
- Membre Relatif
- Messages: 139
- Enregistré le: 17 Avr 2010, 13:39
-
par lol37 » 01 Avr 2012, 10:49
Salut !
Existe t'il une fonction f définie sur un intervalle I tel que pour tout
\in I^2)
on ai
 = \frac{f(x)+f(y)}{f(x)f(y)})
?
-
Iroh
- Membre Relatif
- Messages: 374
- Enregistré le: 14 Oct 2008, 19:24
-
par Iroh » 01 Avr 2012, 10:55
lol37 a écrit:Salut !
Existe t'il une fonction f définie sur un intervalle I tel que pour tout
\in I^2)
on ai
 = \frac{f(x)+f(y)}{f(x)f(y)}-1)
?
La fonction constante qui vaut 1 ?
-
lol37
- Membre Relatif
- Messages: 139
- Enregistré le: 17 Avr 2010, 13:39
-
par lol37 » 01 Avr 2012, 10:58
Iroh a écrit:La fonction constante qui vaut 1 ?
Effectivement, et si on vire le -1 ?
-
Iroh
- Membre Relatif
- Messages: 374
- Enregistré le: 14 Oct 2008, 19:24
-
par Iroh » 01 Avr 2012, 10:59
lol37 a écrit:Effectivement, et si on vire le -1 ?
La fonction constante qui vaut zéro ? (Rien dit =>)
-
lol37
- Membre Relatif
- Messages: 139
- Enregistré le: 17 Avr 2010, 13:39
-
par lol37 » 01 Avr 2012, 11:09
la fonction

convient, reste à voir si c'est la seule ou non.
-
Iroh
- Membre Relatif
- Messages: 374
- Enregistré le: 14 Oct 2008, 19:24
-
par Iroh » 01 Avr 2012, 11:13
lol37 a écrit:la fonction

convient, reste à voir si c'est la seule ou non.
Ah ouai, bien vu

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 55 invités