Photocopiess
Réponses à toutes vos questions de la 2nde à la Terminale toutes séries
-
sad13
- Membre Irrationnel
- Messages: 1526
- Enregistré le: 29 Oct 2010, 21:37
-
par sad13 » 04 Mar 2012, 18:41
BOnsoir, j'ai un problème avec la question 2 quant à la 1 je la fais en disant que X suit une loi binomiale de paramètre n=30 et p=0.05
Le vendeur d'un photocopieur assure a son client que la probabilite pour que son materiel tombe en
panne au cours d'une journee est constante et egale a 0,05.
1. En admettant que ce que dit le vendeur est vrai, calculer la probabilite pour que pendant une
periode de 30 jours
(a) le photocopieur ne tombe pas en panne ;
(b) le photocopieur tombe en panne au plus 3 jours.
(c) Quelle est la moyenne du nombre de jours de panne du photocopieur pendant une periode de
30 jours ?
2. Le client observe qu'au cours d'une periode de trente jours le photocopieur est tombe en panne 5
jours (le photocopieur est repare pendant la journee de sa panne). Que penser de l'affirmation du
vendeur ?
Merci
-
sad13
- Membre Irrationnel
- Messages: 1526
- Enregistré le: 29 Oct 2010, 21:37
-
par sad13 » 04 Mar 2012, 19:15
De l'aide svp?
-
sad13
- Membre Irrationnel
- Messages: 1526
- Enregistré le: 29 Oct 2010, 21:37
-
par sad13 » 04 Mar 2012, 21:34
Petit up svp
-
Sa Majesté
- Membre Transcendant
- Messages: 6275
- Enregistré le: 23 Nov 2007, 14:00
-
par Sa Majesté » 04 Mar 2012, 23:00
Pour la (a) fais un arbre (pas jusqu'à 30 quand même !) et tu verras
-
sad13
- Membre Irrationnel
- Messages: 1526
- Enregistré le: 29 Oct 2010, 21:37
-
par sad13 » 04 Mar 2012, 23:52
le a) c'est pas la loi binômiale?
le b) une indication svp?
-
dilemmae
- Membre Naturel
- Messages: 42
- Enregistré le: 27 Déc 2011, 16:40
-
par dilemmae » 05 Mar 2012, 00:07
Je suis en première S donc je ne suis pas sure de mes résultats, mais si ça peut t'aider...
(a) Soit p(x) = probabilité que le photocopieur tombe en panne en 1 jour
p(x) = 0,05
/p(x) = 1-0,05 = 0,95 = probabilité que le photocopieur ne tombe pas en panne 1 jour
Donc en 30 jours : 0,95^30
(/p(x) = p barre, ou inverse de p(x))
(b) Proba qu'il tombe en panne au maximum 3 jours : p(x) = 0,05^3
(c) Pas du tout du tout sure, j'aurai fais ça mais ça peut très bien être faux /!!\
0,95^30 = 0,2146/30 = 0,0071 jours.
-
sad13
- Membre Irrationnel
- Messages: 1526
- Enregistré le: 29 Oct 2010, 21:37
-
par sad13 » 05 Mar 2012, 00:11
Je vais dormir mais je ne suis pas convaincu
merci
-
dilemmae
- Membre Naturel
- Messages: 42
- Enregistré le: 27 Déc 2011, 16:40
-
par dilemmae » 05 Mar 2012, 00:12
Désolée de ne pas pouvoir affirmer ce que je t'écris.
Bonne nuit :++:
-
Amberss
- Membre Naturel
- Messages: 22
- Enregistré le: 05 Mar 2012, 08:45
-
par Amberss » 05 Mar 2012, 08:50
Petit up svp

-
Sa Majesté
- Membre Transcendant
- Messages: 6275
- Enregistré le: 23 Nov 2007, 14:00
-
par Sa Majesté » 05 Mar 2012, 18:48
dilemmae a écrit:Je suis en première S donc je ne suis pas sure de mes résultats, mais si ça peut t'aider...
(a) Soit p(x) = probabilité que le photocopieur tombe en panne en 1 jour
p(x) = 0,05
/p(x) = 1-0,05 = 0,95 = probabilité que le photocopieur ne tombe pas en panne 1 jour
Donc en 30 jours : 0,95^30
Oui
dilemmae a écrit:(b) Proba qu'il tombe en panne au maximum 3 jours : p(x) = 0,05^3
Non
dilemmae a écrit:(c) Pas du tout du tout sure, j'aurai fais ça mais ça peut très bien être faux /!!\
0,95^30 = 0,2146/30 = 0,0071 jours.
Non
-
Sa Majesté
- Membre Transcendant
- Messages: 6275
- Enregistré le: 23 Nov 2007, 14:00
-
par Sa Majesté » 05 Mar 2012, 18:50
sad13 a écrit:le a) c'est pas la loi binômiale?
Si
sad13 a écrit:le b) une indication svp?
Au plus 3 jours = 3 jours ou moins = 0 jour ou 1 jour ou 2 jours ou 3 jours
Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 94 invités