Je cherche une explication

Réponses à toutes vos questions après le Bac (Fac, Prépa, etc.)
NinaMI
Membre Naturel
Messages: 14
Enregistré le: 19 Oct 2011, 11:02

je cherche une explication

par NinaMI » 19 Oct 2011, 18:40

On a P,Q des nombres pairs appartenants à |N. P/Q est faux (c.à.d irrationnel) car PetQ ne sont pas premier entre eux!
Veuillez bien vouloir m'expliquer pour quoi exactement? soyez claires.
Merci!!



Nightmare
Membre Légendaire
Messages: 13817
Enregistré le: 19 Juil 2005, 17:30

par Nightmare » 19 Oct 2011, 18:46

Bonsoir,

la question n'a pas de sens. Un quotient de deux entiers, par définition, c'est un rationnel, donc difficile de montrer que P/Q est irrationnel, et ce quelle que soit la relation de co-primalité entre eux.

NinaMI
Membre Naturel
Messages: 14
Enregistré le: 19 Oct 2011, 11:02

Merci

par NinaMI » 19 Oct 2011, 18:50

ok! merci! en fait c'est un peu compliqué! mdr! Sayez je viens d'aboutir à ce que je voulais! :id:

Nightmare
Membre Légendaire
Messages: 13817
Enregistré le: 19 Juil 2005, 17:30

par Nightmare » 19 Oct 2011, 18:51

A mon avis, la propriété qui se rapproche le plus de ce que tu voulais énoncé est :

Une fraction dont le numérateur et le dénominateurs sont tous les deux pairs n'est jamais irréductible


Est-ce cela?

NinaMI
Membre Naturel
Messages: 14
Enregistré le: 19 Oct 2011, 11:02

Non!

par NinaMI » 19 Oct 2011, 18:55

Non, pas ça! en fait, c'est tout un exo qui finit comme ça! c'est juste la suite de la demonstration que racine de 2 est irrationnel! Vous voyea un peu près! :happy2:

Nightmare
Membre Légendaire
Messages: 13817
Enregistré le: 19 Juil 2005, 17:30

par Nightmare » 19 Oct 2011, 19:03

Si c'est effectivement en rapport avec l'irrationalité de racine de 2, alors la propriété que j'ai citée dans mon post ci-dessus est exactement celle qui permet de conclure la démonstration de l'irrationnalité que tu mentionnes.

NinaMI
Membre Naturel
Messages: 14
Enregistré le: 19 Oct 2011, 11:02

ok!

par NinaMI » 19 Oct 2011, 19:18

héhé! oui!

 

Retourner vers ✯✎ Supérieur

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 73 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite