Aide pour un DM

Réponses à toutes vos questions du CP à la 3ème
minicac59
Membre Naturel
Messages: 15
Enregistré le: 01 Déc 2010, 09:58

Aide pour un DM

par minicac59 » 17 Déc 2010, 20:08

Bonjour,
J'ai finis les premiers exercices de mon DM de math niveau 3éme mais je bloque sur 2 exercices que je vais mettre ci-dessous si vous pouvez m'aidez sa serait sympa:

1) On donne C = Racine carré de 180 moins 2 racine carré de 80
Ecrire sous la forme a racine carré de b ou a et b sont des nombres entiers, b étant le plus petit possible.

2) soit D= 5 racine carrée de 12 sur 2 racine carrée de 3
Montrer que D est un nombre entier, en faisant apparaître les étape du calcul.

et l''autre exercice:

Voici les 100 premiers chiffres de l'écriture décimale de ( un genre de R ) :

3,1415 92653 58979 32384 62643
38327 95028 84197 16939 93751
05820 97494 45923 07816 40628
62089 98628 03482 53421 17067

1) on prend au hasard l'un des 30 premiers chiffres.
Détermine la probabilité que ce soit:
a.0 b.1 c.2 d.3

2)
Reprendre la question 1 avec:
les 50 premiers chiffres
les 100 premiers chiffres

3) on renouvelle l'experience avec cette fois les 10 000 premiers chiffre de l'écriture décimale de ( genre de R) et on btient:
0 --> apparait 968 fois
1 --> apparait 1026 fois
2 --> apparait 1021 fois
3 --> apparait 974 fois
4 --> apparait 1014 fois
5 --> apparait 1046 fois
6 --> apparait 1021 fois
7 --> apparait 970 fois
8 --> apparait 948 fois
9 --> apparait 1012 fois
Reprendre le question 1 avec ces données.
Que constate-t-on ?

Voila les excercices que je ne comprend pas, merci de votre aide .



nee-san
Membre Irrationnel
Messages: 1220
Enregistré le: 04 Sep 2010, 20:23

par nee-san » 17 Déc 2010, 20:19

[quote="minicac59"]Bonjour,
J'ai finis les premiers exercices de mon DM de math niveau 3éme mais je bloque sur 2 exercices que je vais mettre ci-dessous si vous pouvez m'aidez sa serait sympa:

1) On donne C = Racine carré de 180 moins 2 racine carré de 80
Ecrire sous la forme a racine carré de b ou a et b sont des nombres entiers, b étant le plus petit possible.

2) soit D= 5 racine carrée de 12 sur 2 racine carrée de 3
Montrer que D est un nombre entier, en faisant apparaître les étape du calcul.

pour la 1 la racine tu lécrit V180 sous la forme de avec b un carée parfait et tu réduit

Avatar de l’utilisateur
Sa Majesté
Membre Transcendant
Messages: 6275
Enregistré le: 23 Nov 2007, 14:00

par Sa Majesté » 17 Déc 2010, 20:21

minicac59 a écrit:Bonjour,
J'ai finis les premiers exercices de mon DM de math niveau 3éme mais je bloque sur 2 exercices que je vais mettre ci-dessous si vous pouvez m'aidez sa serait sympa:

1) On donne C = Racine carré de 180 moins 2 racine carré de 80
Ecrire sous la forme a racine carré de b ou a et b sont des nombres entiers, b étant le plus petit possible.
Salut

Il faut décomposer 180 et 80 en produits de facteurs
80 = 2 x 40 = 2 x 2 x 20
etc

minicac59
Membre Naturel
Messages: 15
Enregistré le: 01 Déc 2010, 09:58

par minicac59 » 18 Déc 2010, 08:17

Sa Majesté a écrit:Salut

Il faut décomposer 180 et 80 en produits de facteurs
80 = 2 x 40 = 2 x 2 x 20
etc

80 = 2 x 40 = 2 x 2 x 20 = 2 x 2 x 5 comme sa ?
et avec 180 ?

merci de ton aide

minicac59
Membre Naturel
Messages: 15
Enregistré le: 01 Déc 2010, 09:58

par minicac59 » 18 Déc 2010, 08:19

nee-san a écrit:
minicac59 a écrit:Bonjour,
J'ai finis les premiers exercices de mon DM de math niveau 3éme mais je bloque sur 2 exercices que je vais mettre ci-dessous si vous pouvez m'aidez sa serait sympa:

1) On donne C = Racine carré de 180 moins 2 racine carré de 80
Ecrire sous la forme a racine carré de b ou a et b sont des nombres entiers, b étant le plus petit possible.

2) soit D= 5 racine carrée de 12 sur 2 racine carrée de 3
Montrer que D est un nombre entier, en faisant apparaître les étape du calcul.



pour la 1 la racine tu lécrit V180 sous la forme de avec b un carée parfait et tu réduit


Je comprend pas du tout :hein:

Sve@r

par Sve@r » 18 Déc 2010, 09:21

minicac59 a écrit:80 = 2 x 40 = 2 x 2 x 20 = 2 x 2 x 5 comme sa ?

Réfléchis !!! Est-ce que 2 x 2 x 20 = 2 x 2 x 5 ? Ca voudrait dire que 20 = 5 !!!

Il te faut décomposer 80 en a² x b avec a² carré parfait. C'est pas compliqué, des carrés parfaits entre 1 et 80 il n'y en a que 7.
Donc une fois que tu as écrit 80=a² x b avec a² carré parfait, tu as alors

minicac59 a écrit:et avec 180 ?

Tu fais pareil. Et tu verras que, comme par hasard, b est le même. Tu obtiens donc là aussi
Comme t'as le même pour les deux nombres, tu peux les regrouper.

minicac59
Membre Naturel
Messages: 15
Enregistré le: 01 Déc 2010, 09:58

par minicac59 » 18 Déc 2010, 15:04

Sve@r a écrit:Réfléchis !!! Est-ce que 2 x 2 x 20 = 2 x 2 x 5 ? Ca voudrait dire que 20 = 5 !!!

Il te faut décomposer 80 en a² x b avec a² carré parfait. C'est pas compliqué, des carrés parfaits entre 1 et 80 il n'y en a que 7.
Donc une fois que tu as écrit 80=a² x b avec a² carré parfait, tu as alors


Tu fais pareil. Et tu verras que, comme par hasard, b est le même. Tu obtiens donc là aussi
Comme t'as le même pour les deux nombres, tu peux les regrouper.


Je suis définitivement perdu :mur:
c'est quoi que t'appelle des carrés parfaits ?

Avatar de l’utilisateur
Lostounet
Membre Légendaire
Messages: 9665
Enregistré le: 16 Mai 2009, 11:00

par Lostounet » 18 Déc 2010, 15:11

minicac59 a écrit:Je suis définitivement perdu :mur:
c'est quoi que t'appelle des carrés parfaits ?


Un carré parfait est un nombre tel que sa racine carrée est un nombre entier (positif).

Prenons l'entier 5.

25 est un carré parfait puisque

Si tu as à simplifier, tu dois essayer d'y faire apparaître un carré parfait:

On sait que Donc voilà, un 25 (qui est un carré parfait) est explicité.

Donc




Tu peux le faire avec 180 et 80 ? Cette fois-ci, tu dois trouver d'autres carrés parfaits pour pouvoir simplifier.
Merci de ne pas m'envoyer de messages privés pour répondre à des questions mathématiques ou pour supprimer votre compte.

minicac59
Membre Naturel
Messages: 15
Enregistré le: 01 Déc 2010, 09:58

par minicac59 » 18 Déc 2010, 16:18

Lostounet a écrit:Un carré parfait est un nombre tel que sa racine carrée est un nombre entier (positif).

Prenons l'entier 5.

25 est un carré parfait puisque

Si tu as à simplifier, tu dois essayer d'y faire apparaître un carré parfait:

On sait que Donc voilà, un 25 (qui est un carré parfait) est explicité.

Donc




Tu peux le faire avec 180 et 80 ? Cette fois-ci, tu dois trouver d'autres carrés parfaits pour pouvoir simplifier.

180 = 90 x 2 = 45 x 4 ?
80 = 2 x 40 = 2 x 2 x 20 = 2 x 4 x 10 ?

Euler07
Membre Irrationnel
Messages: 1157
Enregistré le: 25 Avr 2009, 11:00

par Euler07 » 18 Déc 2010, 16:35

180 donne 36 x 5
80 c'est 16 x 5 tu peux faire comme ça aussi ^^

Avatar de l’utilisateur
Lostounet
Membre Légendaire
Messages: 9665
Enregistré le: 16 Mai 2009, 11:00

par Lostounet » 18 Déc 2010, 17:00

minicac59 a écrit:180 = 90 x 2 = 45 x 4 ?
80 = 2 x 40 = 2 x 2 x 20 = 2 x 4 x 10 ?


C'est correct, mais si tu écris


Tu dois encore simplifier ton 45 en 9 * 5...

Je te conseille donc de t’entraîner à trouver le plus grand carré parfait possible dans cette décomposition.

Euler t'a donné un 36 * 5, qui te mènera directement à la simplification maximale. Mais sinon, c'est bien, t'as compris le principe.

Fais de même pour 80.
Merci de ne pas m'envoyer de messages privés pour répondre à des questions mathématiques ou pour supprimer votre compte.

minicac59
Membre Naturel
Messages: 15
Enregistré le: 01 Déc 2010, 09:58

par minicac59 » 18 Déc 2010, 17:32

Lostounet a écrit:C'est correct, mais si tu écris


Tu dois encore simplifier ton 45 en 9 * 5...

Je te conseille donc de t’entraîner à trouver le plus grand carré parfait possible dans cette décomposition.

Euler t'a donné un 36 * 5, qui te mènera directement à la simplification maximale. Mais sinon, c'est bien, t'as compris le principe.

Fais de même pour 80.


Pour 180 je marque 180 = 90 x 2 = 45 x 4 = 9 x 5 x 4 ?
mais aprés comment je met sous la forme aVb ?

Avatar de l’utilisateur
Lostounet
Membre Légendaire
Messages: 9665
Enregistré le: 16 Mai 2009, 11:00

par Lostounet » 18 Déc 2010, 17:35

minicac59 a écrit:Pour 180 je marque 180 = 90 x 2 = 45 x 4 = 9 x 5 x 4 ?
mais aprés comment je met sous la aVb ?


Soient a, b et c trois nombres positifs. On a:

Merci de ne pas m'envoyer de messages privés pour répondre à des questions mathématiques ou pour supprimer votre compte.

nee-san
Membre Irrationnel
Messages: 1220
Enregistré le: 04 Sep 2010, 20:23

par nee-san » 18 Déc 2010, 18:57

un petit conseil, quand tu as par exemple la plus pars du temps il suffit de diviser le plus grand nombre qui est sous la racine par le plus petit pour avoir un carrée parfait car ca marche souvent ou sinon quand on te dit d'écrire sous la forme ba tu peut directement penser a diviser par 2

Sve@r

par Sve@r » 18 Déc 2010, 19:55

minicac59 a écrit:mais aprés comment je met sous la forme aVb ?

On te l'a déjà dit 3 fois. Relis les posts.

nee-san a écrit:un petit conseil, quand tu as par exemple la plus pars du temps il suffit de diviser le plus grand nombre qui est sous la racine par le plus petit pour avoir un carrée parfait car ca marche souvent

Hum, si je divise 80 (le plus grand nombre sous la racine) par 2 (le plus petit) ben je trouve 40 qui est loin d'être un carré parfait...

nee-san
Membre Irrationnel
Messages: 1220
Enregistré le: 04 Sep 2010, 20:23

par nee-san » 18 Déc 2010, 20:15

Sve@r a écrit:Hum, si je divise 80 (le plus grand nombre sous la racine) par 2 (le plus petit) ben je trouve 40 qui est loin d'être un carré parfait...

deja c'était un conseil qui peut servir mais pas toujours vrai et quand je voulais dire plus grand et petit c'est en comparent les nombre sous les racine

Sve@r

par Sve@r » 18 Déc 2010, 20:36

nee-san a écrit:et quand je voulais dire plus grand et petit c'est en comparent les nombre sous les racine

Ah ok. Donc diviser 180 par 80. Effectivement, ça me semble plus cohérent pour donner un carré parfait... :hein:

Faut pas essayer des trucs de grand-mères car ça marche peut-être pour préparer la tisane ou enlever une tâche de beurre mais pas en maths. Les exemples sont prévus pour que le nombre final sous la racine soit le même (exemple : V12 + V27) mais tu obtiens rarement quoi que ce soit de concret en divisant les deux nombres...

nee-san a écrit:mais pas toujours vrai

"mais rarement vrai". En fait, les rares fois où chez-toi ça a marché étaient surtout le fruit du hasard...

nee-san
Membre Irrationnel
Messages: 1220
Enregistré le: 04 Sep 2010, 20:23

par nee-san » 18 Déc 2010, 20:40

Sve@r a écrit:Ah ok. Donc diviser 180 par 80...

Faut pas essayer des trucs de grand-mères car ça marche peut-être pour préparer la tisane ou enlever une tâche de beurre mais pas en maths. Les exemples sont prévus pour que le nombre final sous la racine soit le même (exemple : V12 + V27) mais tu obtiens rarement quoi que ce soit de concret en divisant les deux nombres...

j'ai dit sa car tout mes exo de racine carré de troisième je les réussissait vite comme ça et quand par exemple on donne comme consigne de mètre une expression sous la forme ba moi j'ai toujours diviser ce qui était sous les racines par 5 et j'avais bon mais c'est juste des trucs qui marchent parfois en troisième

Sve@r

par Sve@r » 18 Déc 2010, 20:45

nee-san a écrit:et quand par exemple on donne comme consigne de mètre une expression sous la forme ba moi j'ai toujours diviser ce qui était sous les racines par 5 et j'avais bon mais c'est juste des trucs qui marchent parfois en troisième

Ah là c'est plus pareil. Effectivement, si on te donne une direction, comme écrire V45 sous forme aV5, alors effectivement en divisant par 5 tu trouves de suite.
C'est d'ailleurs normal. Car si peut s'écrire sous la forme , ça veut dire que n=ba². Et donc en divisant n par b tu trouves alors a²...

nee-san
Membre Irrationnel
Messages: 1220
Enregistré le: 04 Sep 2010, 20:23

par nee-san » 18 Déc 2010, 20:48

Sve@r a écrit:Ah là c'est plus pareil. Effectivement, si on te donne une direction, comme écrire V45 sous forme aV5, alors effectivement en divisant par 5 tu trouves de suite.
C'est d'ailleurs normal. Car si peut s'écrire sous la forme , ça veut dire que n=ba². Et donc en divisant n par b tu trouves alors a²...

ba voila ba même dans le cas d'éxo ressemblant au type qui à était postée faire ce que je viens de dire peut être utile parfois (je dit bien parfois, pas toujours)

 

Retourner vers ✎ Collège et Primaire

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 19 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite