Géometrie
Réponses à toutes vos questions du CP à la 3ème
-
joo
- Membre Naturel
- Messages: 56
- Enregistré le: 01 Mar 2010, 19:18
-
par joo » 05 Mar 2010, 23:44
bonsoir a tous
je vous demande (S'il Vous Plait) de bien vouloir m ' aidé
car j'ai une figure a dessiné; Abc est un triangle rectangle en A
Ac =3cm et Bc = 6cm
on ma demander de calculer l'arrondi au mm de AB, j'ai trouvé ;)52 mm
puis je dois calculé le cos C et sa mesure en degrés , j'ai trouver cos C;)0.1 et C°;)60.
puis on me demande de tracer la médiatrice de [BC] elle coupe (AC) en E et (AB) en O
je l'ai fait .
mais le problème est la : on me demande de démontrer que le triangle BEC est isocèle, puis qu'il est équilatéral. je le vois qu'il est isocèle et équilatéral mais je ne sais pas comment l'expliqué .
pouvez vous m'aider ??
-
Jeter
- Messages: 6
- Enregistré le: 05 Mar 2010, 23:14
-
par Jeter » 05 Mar 2010, 23:56
Dans un triangle Isocele , les angles de la base sont égaux.
Dans un triangle equilateral tous les angles mesurent 60.
Le mieux ca serait un schema que tu aurais codé avec les infos
-
joo
- Membre Naturel
- Messages: 56
- Enregistré le: 01 Mar 2010, 19:18
-
par joo » 06 Mar 2010, 00:06
mais je ne sais pas comment dans ce site la faire un schéma (il faudrai que je scan une image mais comment).
-
joo
- Membre Naturel
- Messages: 56
- Enregistré le: 01 Mar 2010, 19:18
-
par joo » 06 Mar 2010, 00:17
-
oscar
- Membre Légendaire
- Messages: 10024
- Enregistré le: 17 Fév 2007, 20:58
-
par oscar » 06 Mar 2010, 08:49
tTiens compte que OE médiatrice de[ BC]:^C =^B = 60° puis =^ E
-
joo
- Membre Naturel
- Messages: 56
- Enregistré le: 01 Mar 2010, 19:18
-
par joo » 06 Mar 2010, 09:29
:hein: ??
je suis dsl mais je n'ai pas tou compris
-
alessan13
- Membre Naturel
- Messages: 28
- Enregistré le: 05 Mar 2010, 11:18
-
par alessan13 » 06 Mar 2010, 09:39
Le calcul de ton cos C est faux. cos d'un angle = coté adjacent/hypoténuse.
Demande toi quel est le côté adjacent et quelle est l'hypoténuse?
Utilise le fait que le point E est sur la médiatrice de [BC] pour prouver que ton triangle est isocèle avec la propriété sur l'équidistance des points de la médiatrice d'un segment.
Après, tu n'auras qu'à utiliser ton angle C pour prouver que le triangle est équilatéral.
-
joo
- Membre Naturel
- Messages: 56
- Enregistré le: 01 Mar 2010, 19:18
-
par joo » 06 Mar 2010, 10:06
ba si c'est bon :hein:
le côté adjacent est AC et l'hypoténuse est BC donc comme AC=3 et BC=6
sa fait cos C= 3/6 sa fait environ 0.1 ?
et pour l'autre question, je dois dire ''comme (EO) est la médiatrice de [BC] et la d'après la propriété sur l'équidistance alors le triangle BEC est isocèle'' ? :mur: . puis pour démontrer que le triangle est équilatéral , il faut dire comme la droite BA est (hauteur médiatrice et médiane dans le triangle BEC) ,alors elle coupe l'angle B en deux donc l'angle B = 60° . et comme dans un triangle la somme des 3 angle vaut 180° alors l'angle E vaut aussi 60°. et comme dans un triangle équilatéral tout les angle valent 60 ° alors le Triangle BEC est équilatéral ??? c'est ça ??? :cry:
-
alessan13
- Membre Naturel
- Messages: 28
- Enregistré le: 05 Mar 2010, 11:18
-
par alessan13 » 06 Mar 2010, 10:37
3/6, ca fait pas 0,1, recalcules!
Par contre, je ne sais pas comment tu as pu trouvé la bonne valeur pour l'angle avec un cosinus faux.?
Pour l'autre question, je ne l'ai pas récité la propriété. A toi de la trouver, elle doit être dans ton livre de maths (souvent les propriétés sont toutes rappelées à la fin du livre).
Pour prouver que ton triangle est équilatéral, ton raisonnement est faux. Le triangle est isocèle en E et non en B, donc tu ne peux pas savoir si la droite (AB est une médiatrice du triangle BCE.
Par contre, tu sais qu'il est isocèle et tu as calculé l'angle C qui fait 60°. Cherche la propriété qui correspond.
ou bien, calcule l'angle B en utilisant le fait que ton triangle est isocèle.
-
joo
- Membre Naturel
- Messages: 56
- Enregistré le: 01 Mar 2010, 19:18
-
par joo » 06 Mar 2010, 10:42
oui :we: car 3/6 si on simplifie sa fait 1/2.
-
joo
- Membre Naturel
- Messages: 56
- Enregistré le: 01 Mar 2010, 19:18
-
par joo » 06 Mar 2010, 10:46
pour le 1er comme Le point E est sur la médiatrice de [BC], donc EB = EC
et le triangle EBC est isocèle c'est ça ,?
ensuite :
alors comme le triangle BEC est isocèle en E et comme l'angle C = 60 °
donc l'angle B = aussi 60°
et comme la somme des trois angle = 180 alors l'angle E = donc 60 °
alors comme tout les angle = 60 ° alors le triangle est équilateral ? c'est sa ??
:cry:
-
alessan13
- Membre Naturel
- Messages: 28
- Enregistré le: 05 Mar 2010, 11:18
-
par alessan13 » 06 Mar 2010, 10:47
Voilà :happy2: tu as tout compris!
-
joo
- Membre Naturel
- Messages: 56
- Enregistré le: 01 Mar 2010, 19:18
-
par joo » 06 Mar 2010, 10:47
pour le 1er comme Le point E est sur la médiatrice de [BC], donc EB = EC
et le triangle EBC est isocèle c'est ça ,?
ensuite :
alors comme le triangle BEC est isocèle en E et comme l'angle C = 60 °
donc l'angle B = aussi 60°
et comme la somme des trois angle = 180 alors l'angle E = donc 60 °
alors comme tout les angle = 60 ° alors le triangle est équilateral ? c'est sa ??
:cry:
-
joo
- Membre Naturel
- Messages: 56
- Enregistré le: 01 Mar 2010, 19:18
-
par joo » 06 Mar 2010, 10:48
dsl j'ai ecrie deux fois sans faire exprès : :mur:
-
joo
- Membre Naturel
- Messages: 56
- Enregistré le: 01 Mar 2010, 19:18
-
par joo » 06 Mar 2010, 10:48
c'est sa ????????????????????
:we: :we: :we:
-
joo
- Membre Naturel
- Messages: 56
- Enregistré le: 01 Mar 2010, 19:18
-
par joo » 06 Mar 2010, 11:10
comment je peu montrer que la droite (BA) est la médiatrice du segment [EC]
-
alessan13
- Membre Naturel
- Messages: 28
- Enregistré le: 05 Mar 2010, 11:18
-
par alessan13 » 06 Mar 2010, 11:12
Tu n'as pas besoin de le prouver pour démontrer que ton triangle est équilatéral.
Une fois que tu as démontré qu'il était équilatéral, c'est facile, comme tu sais que c'est la hauteur.
-
joo
- Membre Naturel
- Messages: 56
- Enregistré le: 01 Mar 2010, 19:18
-
par joo » 06 Mar 2010, 11:16
oui je sais :happy2: , mais je voudrai juste savoir comment démonter que BA est la Médiatrice De [EC] .
-
joo
- Membre Naturel
- Messages: 56
- Enregistré le: 01 Mar 2010, 19:18
-
par joo » 06 Mar 2010, 11:17
si je suis ce que tu me dis :we:
comme le triangle est équilatéral et BA est la hauteur alors c'est aussi la médiatrice et la bissectrice et médiane ?
-
alessan13
- Membre Naturel
- Messages: 28
- Enregistré le: 05 Mar 2010, 11:18
-
par alessan13 » 06 Mar 2010, 11:18
Dans un triangle équilatéral, les hauteurs et les médiatrices sont confondues...
Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 17 invités