par Ben314 » 28 Fév 2010, 17:19
Salut,
Sauf, erreur, en se placant sur un (petit) intervalle I sur lequel f ne s'annule pas, on peut considérer h=g/f qui est non constante sur l'intervalle (sinon g serait multiple de f sur I donc sur tout l'intervalle de résolution de l'équation).
Sur cet intervalle, montrer que ta famille est libre revient à montrer que la famille (1,h,h²,...,h^n) est libre, ce qui est évident, car dans le cas contraire, il existerait un polynôme non nul P tel que P(h(t))=0 pour tout t dans I et comme un polynôme n'admet qu'un nombre fini de racine, h serait constant.
Qui n'entend qu'un son n'entend qu'une sonnerie. Signé : Sonfucius