Bonjour, je viens de terminer cette exercice. Je voudrais savoir si mes reponses sont justes étant donné qu'il n'est pas corrigé.
Soit l'équation différentielle (G): (x²-1)y' + 2xy = 1
- Déterminer les solutions de (G) sur tout intervalle de R/{-1;1}
Rep : Sur ]-00; -1[, S(E) :{(x+C1)/(x²-1), C1 E R}
Sur ]-1; 1[, S(E) :{(x+C2)/(x²-1), C2 E R}
Sur ]1; +00[, S(E) :{(x+C3)/(x²-1), C3 E R}
Existe -t-il une solution définie sur ]-1;+00[?
rep : non (j'ai essayé de faire un recollement des solutions définie sur ]-1;1[ et sur ]1;+00[ mais les limite de continuité en 1+ et 1- ne sont pas finies...d'où le resultat)
Existe -t-il des solutions dfinie sur R?
non d'après la question précédentes.
Mais ce qui me choc c'est que les 2 dernières question sous-entende qu'elle existe ... Sinon je ne vois pas le but de l'exo.
Merci de vos réponses !!!
