Sigma-finie
Réponses à toutes vos questions après le Bac (Fac, Prépa, etc.)
-
badola
- Membre Naturel
- Messages: 18
- Enregistré le: 23 Fév 2008, 05:11
-
par badola » 15 Mai 2009, 06:10
Bonjour,
Je n'ai aucune idee ou on commence dans les deux sens meme si je sais parfaitement la definition d'une mesure sigma-finie du probleme ci- dessus.
Voici l'enonce:
Soit
)
un espace mesure.
Montrer que

est sigma-finie sur
)
si et seulement si il existe une suite
)
tel que

.
J'ai besoin d'indications.
Merci
-
barbu23
- Membre Transcendant
- Messages: 5466
- Enregistré le: 18 Fév 2007, 17:04
-
par barbu23 » 15 Mai 2009, 09:52
Salut : :happy3:
Sans entrer dans les details, à première vue, il y'a un lien entre des
 < \infty $)
qui traduit que

est

- finie, et des integrales :

, non ? reste donc à chercher ce lien entre

est l'integrale

Après faut voir le role de

- presque partout dans cette affaire là ! c'est à dire on travaille dans un milieu en dehors d'un negligeable ( c'est à dire de mesure nulle ) !
Cordialement ! :happy3:
-
badola
- Membre Naturel
- Messages: 18
- Enregistré le: 23 Fév 2008, 05:11
-
par badola » 15 Mai 2009, 13:31
Est-ce que vous voulez dire le lien entre

et l'integrale

,
 = \int \varphi_n)
?
Je ne vois pas pourquoi la relation

est toujours vrai ? Il est vrai si on integre sur un ensemble de mesure fini.
Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 46 invités