J'ai actuellement un souci à résoudre un exercice portant sur les suites récurrente.
On définit : f(x) = (x²+1) / (x-1).
1- Etudier en fonction de son terme initial u0, le comportement de la suite définie par la relation de récurrence :
Pour tout n, u(n+1)= f(un)
Donc, j'ai tout d'abord étudier la fonction f :
elle est définie sur R privé de 1 et son tableau de variations donne :
sur ]-;), 1-;)2 ], f est croisssante.
sur [1-;)2 , 1 [, f est décroissante
sur ]1, 1+;)2 ], f est décroissante
sur [1+;)2, +;)[, f est croissante.
J'ai également déterminé les points fixes : x= -1 et étudier le signe de f(x) - x.
f(x) - x >0 pour x
f(x) -x <0 pour x
La suite me pose problème.
Il me semble qu'il faut que je détermine les intervalles stables sur lesquels f est monotone ou f(x)-x est de signe constant avant de pouvoir discuter en fonction de u0 du comportement de la suite.
Dans ce cas là, les intervalles stables sont les 4 intervalles écrits en gras ci-dessus (je me trompe?).
Comment faire la discussion ensuite ? :hum:
Merci d'avance pour vos éventuelles réponses.
