par bouhbouh » 04 Nov 2008, 00:17
Bon en fait en insistant j'ai fini par trouver une solution, peut être pas la plus rapide mais ça fonctionne...
AD = -2AB
A = bary (D,1) (B,2)
AD + 2AD + 2DB = 0
3AD - 2BD = 0
D = bary(A,3)(B,-2)
BE = -2BC
B = bary (E,1) (C,2)
BC + CE + 2BC = 0
3BC - EC = 0
C = bary (B,3) (E,-1)
BE + 2BE + 2EC = 0
3BE - 2CE = 0
E = bary (B,3) (C,-2)
G = bary (A,a)(E,e)
G = bary (D,a/3)(B,2a/3)(E,e)
G = bary (D,a/3)(E,2a/9)(C,4a/9)(E,e)
G = bary (D,a/3)(C,4a/9)(E,2a/9+e)
Or G = bary (C,c)(D,d) car G appartient à (CD)
Donc 2a/9 + e = 0
On pose a = 9 donc e = -2
G = bary (A,9)(E,-2)
G = bary (C,c)(D,d)
G = bary (B,3c/2)(E,-c/2)(D,d)
G = bary (B,3c/2)(E,-c/2)(A,3d)(B,-2d)
G = bary (B,3c/2-3d)(E,-c/2)(A,3d)
Or G = bary (A,a)(E,e) car G appartient à (AE)
Donc 3c/2-3d = 0
On pose c = 2 donc d = 1
G = bary (C,2)(D,1)
CF = kCA
C = bary (F,1) (A, -k)
CF - kCF - kFA = 0
(1-k)CF + kAF = 0
F = bary (C,1-k) (A, k)
G = bary (B,b)(F,f)
G = bary (E,b/3)(C,2b/3)(F,f)
G = bary (E,b/3)(C,2b/3)(C,f(1-k))(A,fk)
G = bary (A,fk)(E,b/3)(C,2b/3+f(1-k))
Or G = bary (A,a)(E,e) car G appartient à (AE)
Donc 2b/3+f(1-k) = 0
G = bary (A,fk)(E,b/3)(C,2b/3+f(1-k))
G = bary (D,fk/3)(B,2fk/3)(E,b/3)(C,2b/3+f(1-k))
G = bary (D,fk/3)(B,2fk/3)(B,b)(C,-2b/3)(C,2b/3+f(1-k))
G = bary (D,fk/3)(B,2fk/3+b)(C,f(1-k))
Or G = bary (C,c)(D,d) car G appartient à (CD)
Donc 2fk/3 + b = 0
On pose b = 3 donc :
2+f(1-k) = 0
2fk/3 + 3 = 0
2+f-kf = 0
2fk = -9
f=2/(k-1)
Donc 2k*2/(k-1) = -9 <=> 4k = -9k + 9 <=> k = 9/13