Formule de Stirling
Réponses à toutes vos questions après le Bac (Fac, Prépa, etc.)
-
Satto
- Membre Naturel
- Messages: 32
- Enregistré le: 21 Sep 2007, 19:28
-
par Satto » 05 Oct 2008, 16:34
On me propose de démontrer la célebre formule de Stirling en passant par des suites
U_n=1/2 ln(n)+n.ln(n/e)-ln(n!)
La permiére question et :
Montrer en le calculant, qu'il existe ;)>0 tel que :
U_(n+1)-U_n= ;)/n^2 +o(1/n^2 )
je pense que je dois réalsier un dl en + l'infinie. Mais je trouve un ;)<0
Avant de réaliser mon Dl j'arrive ici :
[ln((n+1)/n) (1/2+ n+1)]-1
Pouvez vous me dire si mon erreur se trouve avant ceci ou si vous etes ok jusque la !
-
nuage
- Membre Complexe
- Messages: 2214
- Enregistré le: 09 Fév 2006, 22:39
-
par nuage » 05 Oct 2008, 16:58
Salut,
En calculant

je ne trouve pas la même chose que toi.
Et je pense ne pas m'être trompé (mais personne n'est parfait).
Donc je crois que ton calcul est faux avant le DL.
-
Satto
- Membre Naturel
- Messages: 32
- Enregistré le: 21 Sep 2007, 19:28
-
par Satto » 05 Oct 2008, 17:07
Merci j'ai effectivement trouvé un ;) = (1/12)
Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 16 invités