DM de 2sde, fonction...
Réponses à toutes vos questions de la 2nde à la Terminale toutes séries
-
LoLiLoUnA
- Messages: 3
- Enregistré le: 23 Nov 2005, 16:52
-
par LoLiLoUnA » 23 Nov 2005, 17:14
Bonjour a tous,
voila je bloque sur ce devoir maison depuis plus de deux heures. :doh: :triste:
Je voudrai obtenir plussieurs pistes s'il vous plais!
"Le volume d'un cône de hauteur x inscrit dans une sphére de rayon 5cm est donné, en cm cube, pr la formule : V(x)=1/3 fois pie fois x² facteur de (10-x)
Déterminer une valeur approchée à 10 puissance -2 près de la hauteur qui rend le volume du cône maximal"
Merci a tous de bien vouloir me répondre au plus vite car je suis interne et que cela est pour vendredi :briques:
Bisous et bonne soirée
-
krou
- Membre Naturel
- Messages: 90
- Enregistré le: 19 Mai 2005, 21:07
-
par krou » 23 Nov 2005, 17:32
commences par trouver le volume de ta sphère : la formule pour une sphère de rayon r est :

tu obtiendras ainsi une inéquation dont tu cherches un maximum
-
LoLiLoUnA
- Messages: 3
- Enregistré le: 23 Nov 2005, 16:52
-
par LoLiLoUnA » 23 Nov 2005, 17:44
krou a écrit:commences par trouver le volume de ta sphère : la formule pour une sphère de rayon r est :

tu obtiendras ainsi une inéquation dont tu cherches un maximum
Oui donc :
Volume d'une sphère de 5cm de rayon : 4/3 fois pi fois 5 au cube=523.60 (environ)
donc 523.60 supérieur ou égal à 1/3 fois pi fois x² facteur (10-x)
??
mais après j'en viens à quoi ? :marteau:
-
krou
- Membre Naturel
- Messages: 90
- Enregistré le: 19 Mai 2005, 21:07
-
par krou » 23 Nov 2005, 18:16
en fait, je pense qu'avec les outils dont tu disposes, tu dois essayer de trouver par "tatonnements"
tu sais que x est entre 0 et 10, tu peux aussi "sentir" (par exemple graphiquement en faisant varier ton cercle de base) que si tu pars de 0 et que tu vas petit à petit jusqu'à 10, le volume du cône va tout d'abord augmenter puis diminuer.
donc tu calcules des valeurs de volumes pour x variant de 1 en 1, quand tu auras éncadré ce maximum, tu refais le travail de 0.1 en 0.1 et enfin de 0.01 en 0.01 .
l'année prochaine tu sauras calculer la valeur exacte de ce maximum, patience ;)
désolé par contre, le volume de la sphère n'est finalement pas necessaire pour resoudre cet exercice, j'ai été trop hâtif :marteau:
-
LoLiLoUnA
- Messages: 3
- Enregistré le: 23 Nov 2005, 16:52
-
par LoLiLoUnA » 23 Nov 2005, 18:24
krou a écrit:en fait, je pense qu'avec les outils dont tu disposes, tu dois essayer de trouver par "tatonnements"
tu sais que x est entre 0 et 10, tu peux aussi "sentir" (par exemple graphiquement en faisant varier ton cercle de base) que si tu pars de 0 et que tu vas petit à petit jusqu'à 10, le volume du cône va tout d'abord augmenter puis diminuer.
donc tu calcules des valeurs de volumes pour x variant de 1 en 1, quand tu auras éncadré ce maximum, tu refais le travail de 0.1 en 0.1 et enfin de 0.01 en 0.01 .
l'année prochaine tu sauras calculer la valeur exacte de ce maximum, patience

désolé par contre, le volume de la sphère n'est finalement pas necessaire pour resoudre cet exercice, j'ai été trop hâtif :marteau:
ok !!! sa y est je vois mieux maintenant
merci beaucoup pour cette petite mais très grande a mes yeux aide
bisous et bonne soirée a tous
(je vais essayer de me débrouiller seule maintenant...) :we: :ptdr:
-
rene38
- Membre Légendaire
- Messages: 7135
- Enregistré le: 01 Mai 2005, 11:00
-
par rene38 » 23 Nov 2005, 18:35
Bonjour
Tu es sûre de ton énoncé ?
Le volume d'un cône de hauteur x inscrit dans une sphére de rayon 5cm est donné, en cm cube, pr la formule : V(x)=1/3 fois pie fois x² facteur de (10-x)
Le volume d'un cône est donné par

Si ta formule est exacte, x n'est pas la hauteur du cône mais son rayon de base et alors, pourquoi sa hauteur serait-elle 10-x ?
-
krou
- Membre Naturel
- Messages: 90
- Enregistré le: 19 Mai 2005, 21:07
-
par krou » 24 Nov 2005, 02:57
je suppose que dans cet exo ils ont voulu mettre en relation la hauteur du cône avec son rayon de base avec comme point de base "le point le plus haut" du cercle, ce qui expliquerait le h=(10-x)
de toute façon je vois mal donner un exercice en seconde ou il faudrait raisonner sur 2 variables indépendantes :)
Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 90 invités