Formules de cauchy
Réponses à toutes vos questions après le Bac (Fac, Prépa, etc.)
-
cristuf
- Membre Naturel
- Messages: 14
- Enregistré le: 27 Oct 2007, 17:49
-
par cristuf » 05 Mar 2008, 20:59
bonjour,
voici un exo d'1 dm que je n'arrive meme pas a commencer:
soit somme an.z^n une série entiere de rayon de convergence R>0 et f sa somme sur D(0,R).
pour la notation désole et #=pie
pour r appartenant à ]0.R[ et n appartenant à N
1) Montrer que
an= (1/(2#r^n)).int[0 à 2#] ( f(r.exp(i.teta)). exp(-i.n.teta) dteta )
2)montrer que
(1/2#).int[0 à 2#] ( |f(r.exp(i.teta)|² dteta)=somme[n=0 à +inf]|an|².r^(2n)
alors après quelques recherches j'ai pu voir que c'était tout simplement une propriété de cauchy .
Bon a part ca...
j'ai trouvé aucune démo aucune aide ni rien et jme prends pas pour cauchy^^
donc si quelqu'un a des idées jsui preneur
merci d'avance
par alavacommejetepousse » 05 Mar 2008, 21:03
bonsoir
il ya convergence normale sur D(0,r) fermé donc on peut permuter série et intégrale.
-
cristuf
- Membre Naturel
- Messages: 14
- Enregistré le: 27 Oct 2007, 17:49
-
par cristuf » 06 Mar 2008, 20:20
Jédusor a écrit:Tout les bebes du senegal savent resoudre cet exercice trivial, pourquoi des etudiant ny arrivent ils pas tout seul?
oui c'est aussi ce que je me demande , merci pour le flood^^
non sérieusement ya pas quelqu'un qui pourrait me donner au moin un lien vers une démonstration de ce théorème ou une aide interessante?
merci
par alavacommejetepousse » 06 Mar 2008, 20:23
cristuf a écrit:non sérieusement ya pas quelqu'un qui pourrait me donner au moin un lien vers une démonstration de ce théorème ou une aide interessante?
merci
tu n'as pas lu ?
écris f sous forme d'une série et permute les signes intégrale et sigma le résultat est immédiat.
-
cristuf
- Membre Naturel
- Messages: 14
- Enregistré le: 27 Oct 2007, 17:49
-
par cristuf » 06 Mar 2008, 20:40
si j'ai bien lu ta réponse mais je ne vois pas comment permuter les sigma et les intégrales vont m'aider dans la 1 et d'autre part pour la question 2 j'obtient en partant du membre de droite:
somme[n=0 à +inf]|an|².r^(2n)
=somme[n=0 à + inf] 1/(4.pie²).( int[0 à 2pie]|f(r.exp(i.teta).exp(-i.n.teta)) dteta| )²
j'ai pas mieux
par alavacommejetepousse » 06 Mar 2008, 20:57
tu fais la question avant la 1?
la 2 est également une permutation de sigma et intégrale en écrivant
l f l ^2 comme une série double
-
cristuf
- Membre Naturel
- Messages: 14
- Enregistré le: 27 Oct 2007, 17:49
-
par cristuf » 06 Mar 2008, 21:02
alavacommejetepousse a écrit:la 2 est également une permutation de sigma et intégrale en écrivant
l f l ^2 comme une série double
série double?? alors je suis vraiment pas sur d'avoir vu ca ca ne me dit rien.
Et je préfère faire les questions dans l'ordre mais bon quand j'arrive à rien à la première ...
Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 47 invités