Intervalle_confiance_loi_bin

Réponses à toutes vos questions après le Bac (Fac, Prépa, etc.)
intervalledeconfiance
Messages: 2
Enregistré le: 24 Sep 2007, 11:00

intervalle_confiance_loi_bin

par intervalledeconfiance » 24 Sep 2007, 11:19

Bonjour
Je suis actuellement en stage et mon maître de stage m’a demandé de calculer des intervalles de confiance (loi binomiale). Mes bases en statistiques demandant d’être améliorées, je ne m’en sors pas. Mon problème avant tout est que je dispose d’un exemple que m’a donné mon maître de stage. Avant de calculer mes propres intervalles de confiance pour des autres cas, je cherche à retrouver les résultats de mon maitre de stage sur cet exemple. Mais le problème est que je n’y arrive pas. Malgré de nombreuses recherches sur internet, l’utilisation de plusieurs abaques (qui ne parviennent jamais au même résultat) je ne m’en sors pas.
Voici l’exemple : l’échantillon est de 157. Il y a 133 événements observés dans cet échantillon. La fréquence observée dans l’échantillon est donc de 84,7% de succés. Mon maître de stage trouve un intervalle de confiance (loi binomiale) de (80,4%-88,4%).

Parvenez vous à retrouver le même résultat ?

Merci de votre aide.

A bientôt.



alben
Membre Irrationnel
Messages: 1144
Enregistré le: 18 Mai 2006, 21:33

par alben » 24 Sep 2007, 13:55

Bonjour,
Il manque une info : on ne peut par parler d'intervalle de confiance sans préciser un seuil de confiance, c'est à dire la probabilité que la valeur vraie du paramètre soit dans l'intervalle. Au vu de tes chiffres, il semblerait que cette proba soit de de l'ordre de 80 à 90 %

intervalledeconfiance
Messages: 2
Enregistré le: 24 Sep 2007, 11:00

par intervalledeconfiance » 24 Sep 2007, 14:34

Merci de ta réponse. En effet j'ai oublié de le préciser. Il s'agit d'un seuil de confiance de 90%.

alben
Membre Irrationnel
Messages: 1144
Enregistré le: 18 Mai 2006, 21:33

par alben » 24 Sep 2007, 15:42

Oui, ça n'est pas exactement le résultat de ton maitre de stage.
En fait, on ne calcule pas avec la loi binomiale mais on utilise son approxiamtion par la loi normale.
Il faut lire dans une table à quelle valeur de la variable t correspond un risque de 10 %. C'est t=1.28 et à partir de là on a plusieur possibilités.
1 un calcul assez précis : la méthode de l'ellipse où l'on cherche les solutions de l'équation du second degré n(f-p)²=t²p(1-p) où f est le taux sur l'échantillon, t le nombre lu sur la table de la loi normale et n la taille de l'échantillon. Les deux solutions p1 et p2 donne l'intervalle
2 un calcul centré sur le résultat de l'échantillon p=f +/- t.racine(f(1-f)/n)

mais comme tout se trouve sur internet, on peut aussi faire le calcul en ligne
ici

Retourner vers ✯✎ Supérieur

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 22 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite