Séries

Réponses à toutes vos questions après le Bac (Fac, Prépa, etc.)
minidiane
Membre Rationnel
Messages: 678
Enregistré le: 06 Nov 2006, 18:04

Séries

par minidiane » 13 Juin 2007, 13:43

Bonjour je n'arrive pas à démontrer que l'intégrale de 0 à +l'infini de sint/t dt converge comment dois-je mis prendre?



kazeriahm
Membre Irrationnel
Messages: 1608
Enregistré le: 04 Juin 2006, 09:49

par kazeriahm » 13 Juin 2007, 13:48

considère l'intégrale de 0 à X de sin t/t et intègre par parties, de manière à augmenter le degré du dénominateur, et regarde ce qui se passe quand X-> infini

B_J
Membre Rationnel
Messages: 621
Enregistré le: 28 Aoû 2006, 02:21

par B_J » 13 Juin 2007, 13:48

Salut ;
par parties ( integrer sin et deriver 1/t )

minidiane
Membre Rationnel
Messages: 678
Enregistré le: 06 Nov 2006, 18:04

par minidiane » 13 Juin 2007, 13:55

ok merci
j'obtient [lntsint] entre 0 et X - intégrale de lntcost dt entre 0 et X
Est-ce que c'est correcte?
ensuite lntsint=0 en 0 et il me reste donc lnXsinX - l'intégrale de lntcost dt entre 0 et X
Je n'arrive pas à calculer cette dernière intégrale.

kazeriahm
Membre Irrationnel
Messages: 1608
Enregistré le: 04 Juin 2006, 09:49

par kazeriahm » 13 Juin 2007, 13:56

non non tu as fait le contraire de ce que tu devais faire, dérive 1/t et intègre sin

minidiane
Membre Rationnel
Messages: 678
Enregistré le: 06 Nov 2006, 18:04

par minidiane » 13 Juin 2007, 14:01

ah zut
j'obtiens donc [-cost/t]-intégrale de (1/t²) cost dt
ce qui me donne -1/t+cost/t-intégrale de (1/t²) cost dt
Faut-il à nouveua intégrer par partie?

Joker62
Membre Transcendant
Messages: 5027
Enregistré le: 24 Déc 2006, 19:29

par Joker62 » 13 Juin 2007, 14:09

u = 1/t............................u' = -1/t²
v' = Sin t..........................v = -Cos(t)

Image

L'intégrale converge clairement, reste à voir que (Cos(t)/t)(0) - (Cos(t)/t)(+oo) tend vers une limite finie.

minidiane
Membre Rationnel
Messages: 678
Enregistré le: 06 Nov 2006, 18:04

par minidiane » 13 Juin 2007, 14:16

Si l'intégrale converge sa veut dire que la fonction est tend vers 0 c'est sa?
Donc l'intégrale est nulle?
Il me reste à montrer dans ce cas que cost/t tend vers une limite finie?

kazeriahm
Membre Irrationnel
Messages: 1608
Enregistré le: 04 Juin 2006, 09:49

par kazeriahm » 13 Juin 2007, 14:22

non l'intègrale de cos t/t^2 n'est pas nulle, mais elle existe, je rapelle le problème : savoir si ton expression a une limite finie quand X tend vers l'infini.

Tu dois donc justifier, après avoir intègrer par parties comme tu l'as fait, que le terme à droite de ton égalité tend vers une limite finie quand X tend vers l'infini

minidiane
Membre Rationnel
Messages: 678
Enregistré le: 06 Nov 2006, 18:04

par minidiane » 13 Juin 2007, 14:24

A oui ok donc je dois dire que cette intégrale converge et donc il me reste à montrer que cost/t converge également c'est bien sa? ou bien c'est encore pas bon?

Joker62
Membre Transcendant
Messages: 5027
Enregistré le: 24 Déc 2006, 19:29

par Joker62 » 13 Juin 2007, 14:26

Bien l'intégrale converge clairement ( soit par critère d'Abel, soit par comparaison à une intégrale de Riemann )

Reste à montrer la limite finie de -cos t/t entre 0 et +oo

minidiane
Membre Rationnel
Messages: 678
Enregistré le: 06 Nov 2006, 18:04

par minidiane » 13 Juin 2007, 14:32

ok merci
Faut-il utiliser le dl de cos?

Joker62
Membre Transcendant
Messages: 5027
Enregistré le: 24 Déc 2006, 19:29

par Joker62 » 13 Juin 2007, 14:33

Ben utilise ce que tu veux tant que tu y arrives lol :D

reckahomis1
Membre Naturel
Messages: 23
Enregistré le: 11 Juin 2007, 21:19

par reckahomis1 » 13 Juin 2007, 14:37

remplacons sint par ;)(1-cos²t)
donc § sint/t = § ;)((1-cos²t)/t²)

tu vas trouvé 0 < (1-cos²t)/t² < 1/t²

l'intergarl de riemann suivant 0§+;) 1/t² est convergente ,car ;)=2>1/2

donc on peu conclure que : 0§+;) (1-cos²t)/t² est convergente

voila c tt

minidiane
Membre Rationnel
Messages: 678
Enregistré le: 06 Nov 2006, 18:04

par minidiane » 13 Juin 2007, 14:38

lol le problème c'est que ça ne marche pas. :mur:

minidiane
Membre Rationnel
Messages: 678
Enregistré le: 06 Nov 2006, 18:04

par minidiane » 13 Juin 2007, 14:39

reckahomis1 a écrit:remplacons sint par ;)(1-cos²t)
donc § sint/t = § ;)((1-cos²t)/t²)

tu vas trouvé 0 1/2

donc on peu conclure que : 0§+;) (1-cos²t)/t² est convergente

voila c tt



merci pas besoin de faire un ipp alors
Pourquoi on § sint/t = § ;)((1-cos²t)/t²) et pas § sint/t = § ;)((1-cos²t)/t)

fahr451
Membre Transcendant
Messages: 5142
Enregistré le: 05 Déc 2006, 23:50

par fahr451 » 13 Juin 2007, 14:45

j'ai survolé le post

mais il faut couper en 1 avant d'intégrer par parties sinon on tombe sur une intégrale qui diverge en 0

reckahomis1
Membre Naturel
Messages: 23
Enregistré le: 11 Juin 2007, 21:19

par reckahomis1 » 13 Juin 2007, 14:47

tu px la faire mais tu vas tomber sur la meme expression
donc tu doi utiliser la regle de riemann, c nécessaire

fahr451
Membre Transcendant
Messages: 5142
Enregistré le: 05 Déc 2006, 23:50

par fahr451 » 13 Juin 2007, 14:50

NON
tu ne peux pas faire d 'intégration par parties en 0 en dérivant 1/t !!!!!!

minidiane
Membre Rationnel
Messages: 678
Enregistré le: 06 Nov 2006, 18:04

par minidiane » 13 Juin 2007, 14:50

reckahomis1 a écrit:tu px la faire mais tu vas tomber sur la meme expression
donc tu doi utiliser la regle de riemann, c nécessaire

ok mais pourquoi on § sint/t = § ;)((1-cos²t)/t²) et pas § sint/t = § ;)((1-cos²t)/t) ?

 

Retourner vers ✯✎ Supérieur

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 118 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite